Ампер дополнил подход Лагранжа: он дал новое определение производной и предложил новую формулу для разложения в ряд Тейлора, по-прежнему не используя понятия предела.
Определение, предложенное Ампером в его статье 1806 года, основывается, как мы можем видеть, на алгебре.
Производная функции f(x) — функция от х следующего вида:
f(x + i)-f(x)/i
Она всегда лежит между двумя значениями производной функции, взятыми между х и х + г/, какими бы ни были x и y.
Андре-Мари Ампер называл частной функцией приращения частное, возникающее в данном ниже определении. Прежде чем дать определение в тексте, он объяснял, откуда появлялись эти выражения:
«Эта функция (приращения), которая очевидным образом зависит от ƒ(x) и которую господин Лагранж назвал вследствие этого ее производной функцией, является, как мы знаем, очень важной в математике, особенно в геометрии, и механике; мы запишем ее, как делал этот блестящий математик, в виде ƒ(x), и нашей первой целью будет доказательство ее существования».
На самом деле при i = 0 мы получаем неопределенность вида 0/0. Но Ампер доказал, что эта неопределенность может иметь какое угодно значение, не только 0 или бесконечность; он доказал существование частного приращения, уточнив его определение. При этом Ампер не рассматривал возможность, когда i стремится к нулю, а ограничился ситуацией, когда i равно нулю; в некотором роде ученому не хватило понятия предела. Потом он проверил свое определение, применив его к тригонометрическим функциям. Он расширил использование определения, с тем чтобы доказать, что теорема Тейлора, несмотря на ее сложность, является релевантной. Исследование заканчивается обобщением подхода Ампера к функциям с двумя переменными, что является предвестием большего математического труда под названием «Общие рассуждения об интегралах в дифференциальных уравнениях в частных производных», опубликованного в 1815 году в журнале Политехнической школы.
ТЕОРЕМА ТЕЙЛОРА
Ряд Тейлора — это бесконечная сумма выражений, содержащих производные функции f(x) всех порядков. Ряд Тейлора функции f(x) в окрестности точки х = а записывается в виде следующего степенного ряда:
>∞
f(x)=f(a) + f'(a)/1!(х - а)+f"(a)/2!(х - а)2+f'"(a)/3!(х - а)3+...Σf>(n)(a)/n!(х - а)>n
>n=0
Чем больше степень, тем точнее приближение функции; иными словами, приближение улучшается по мере добавления членов ряда. Напомним, что n! — это факториал, математический оператор, который является произведением всех натуральных чисел от 1 до n включительно. Например: 4! = 4 х 3 х 2 х 1 = 24. Случай приближения функции синуса окрестности точки х = 0 простой, потому что все четные производные обнуляются (см. рисунок):