Вероятно, это уж слишком, но я не могу устоять перед искушением привести вам еще один интересный пример того, как ведет себя свет и как можно проанализировать его поведение, пользуясь правилами последовательных этапов. Поместим детектор под стеклом и рассмотрим вопрос, о котором мы не говорили в первой лекции, – о вероятности прохождения света через две поверхности стекла (см. рис. 43).
Вы, конечно, знаете ответ: вероятность того, что фотон попадет в В, равна просто 100 % за вычетом найденной раньше вероятности, что фотон попадет в А. Так, если мы получили, что вероятность попасть в А равна 7 %, то вероятность попасть в В равна 93 %. А так как вероятность для А меняется от 0 через 8 % до 16 % (для разных толщин стекла), то вероятность для В меняется от 100 % через 92 % до 84 %.
Это правильный ответ, но мы ожидаем, что все вероятности можно вычислять, возведя в квадрат результирующую стрелку. Как вычислить амплитуду пропускания света стеклянной пластинкой? И как ей удается таким именно образом менять свою длину, чтобы всегда соответствовать длине амплитуды А, так что вероятность для А и вероятность для В в сумме всегда дают 100 %? Давайте рассмотрим вопрос несколько подробнее.
![](
AABUCElEQVR42u19C3Bd1ZXlLoRlybJL8gf5B7aMC4wdN4EU4Hb4BUgTGihoksyQgaTzYUim
0xO6J51Mz4RQxRRJpz8pQsN0uhMSJp0Pgek0BCrxAJ2YACEOxIOBdmwMhS0bbNnGQlZZsiTb
zzV39V177n5H9/0kvaf3dPeqOvXuu+/+3rlnr7P3Pvvsc6I4so4ms53j91yBY3JeXVMPJ3oV
ZB5WsFv42RGVJVFZGZWtUdnk1eQk4Jh6mBuV+VE5IyorKPCrozISlelRWRSVzqjc7STgJOCo
X/VdSqjpMynILRR2CP47onJKVFZFZRnbwAlF7ndKARPB4STgqAP13Qr7aezNz4vKIe5fG5VT
ozKDZFAKR6KyJyr7SBCdJAuYB71e9U4CjvrQAs6kgAJnR2UpCWAZhbW5DEE/GpXBqOyIynMU
+pei0hOVfpaPROVOXne+k4CTgGNiBDgXqPSFevVZUWk1ajycdF1RuYgC3xaV40XUeAj4W9yG
gL8WlSGJnXwvR6UvKnujsr+Imv8UCaOZ997ir9BJwDFxarzdhrq9gL34+6KynEK+jJ9tBa53
AoVUhXMHhX8re3cI+TDV++ExkNUuXnMFzYp1/gqdBBzjgzrpzqDArzQ2+0lFhF2xnwKtwr6T
grmPvXxfCWEvd6zf/j5kfAsOJwFX48sUpIXs2WfzE4469cafTDX/hBT1HWVaVA5G5XBUtkdl
c1TmROWZqDwk8fDdwARoIuVghIRzFp/BRwicBFyNN9stFPJW9uwtkgTXnCvJGHuxXl0o7I+y
CDUECF4/SWAySW+ApsZ1fC78nx5vDk4CWdQCplHgu9jLw24/k4IxvYgqf4S9ulCNf5rbv43K
szy3mLBbraNpHD36eEhPRwRmkPAcTgINJ8BWiEoJj0bQQdgXSxxUs4b7IATzpLA3Hp76XRTo
fqr2D0gcaXeE34fHIYyTpYa/yk+QXHuKeeRwEmgYNV6FfAl7c6Ggz5MkkAa9+2op7KA7QqF+
mer8Lh6LHnJbVF6U2Fk3lQSkh/8V9XOOePiwk0ADAALex2143S+n8GPc/SLa6m1U8ZtL2Oyb
qca/bWz2l6S8oJmmCjSQesYu1kEnCVSmyP9y1CEJVOqBb6JNDlV9gSRe+DVUvedIcefcoLHX
QRq7KfT72Js/KaWH3MrRQhpdUA6yXjBCsMq8JycAJ4Gqqu5hII1OfNnMnl5nvJUbKqthsgig
eV3iYJpXqerCq98t7vUu9l5eiMqHSaowfQa8WpwEqgm125dRfb+Gja+ZKnoh55yNh3+Cgi7s
1XewR99VQpWvpQe+kTBotqc7CTgJFBKcXBH1Pk3Q29kLqyp/MQW8WEBNpyQBNVtoqws1hEfZ
ow9J8Xj4crWRqYA0Eyvt/xZ6V3oOtKfj4hOJnAQqFJwchf2dkmSpAbpot+ssuGLDbhYQ8Hup
0uN6T9Fe9R67OFqoIaXFGqyiD6S3xLvdS3KdJz6RyEmgAE5lY0PvjqCaxRT6q2i3l/LEq8qp
Q3P7qdI/Rg0B3/+XpAfVjEUTyZI9/1/pP7md9af1coPE04Q/IaUnBsGMwizEs0jqPpEo4yQw
lwKt01zRM3w2Khfw93IcdNP4Hbb6j6KygT39tRKP2a/jPuD+cWgijarCS0rPnabC63eQMJyn
6+n7sMOTfyixI/UxkkCO7+02km45DtEBSeYQzHeRyS4JoKHdInEwzRyq5Gnhsvsl31uv89rR
AO+javnHUXkjKt8MVEvdnpnx3lsCIrD7zqYp9ZAhgo9H5fNReT8JVI8vFOZ7JYnhYUkcqKX8
ChslnkPgqcYySgJNFNhLA2GHiriIvQS2X6Ct3mIaIGxJhNH2Bb1OH4U+rec7luGGpnWwlL37
44EW9nWS7IagPpsDVb2F9Qi/yXFJYiJw/Ru5/ZiUjoPQd/ASP32YMCMkEDqQ0CDX8Dsa1Oei
8i02stlSeVDN+iI9n0wB4S9XjV9LgVofnNNKretDUfl9SUJ1T+d7gHP0UMo9DphtaGgj1MSG
jAawlmYXQpx/Uob/RH97hd910pSTwBQngdAeHQoa2j8Yofcgm9L1pyMlmgtAf4NA30Gfyr1G
4JaQAEK0GhPLCuEs7vu5uYaOnMwhIcAU05EYkMhNfHflalw69Hqa+DBhZswB25APSeIdbmPv
35PSWziSmYjbAn8KzCnE4H/aCPBTrM/rSQJah8PUrg6y3q0gQtg3B/c8xP17gvemZpnOaFxN
k+5ngS+m2PvLmXts5vlniA8TZsYnoA0AjfZpksA0Oqd6Cqj0lQhJsfPs+PZkqPCF7rtQkpER
Cfwa0yjsGH//gBGUayg829hrKwn0S5IyzArjdiPwAymawG+DZ1rKaxwN9g9TdUfP/6d8dpge
N9O30FNB/Q6Z52xxsckOCVg8QRUSPdfiCjUAawePGIEpJmi3S+y5vquGKnwhgPQQr/Au9qY6
MvKmxOPsG/gf0eOfzzqannKd3ZJkFLJm1tvmGSBg75bE4WqxgJ+vB/XaxmvkCpgj/cZ0g/nx
XWofd0lleQf1OTFR634XneyRwCts9CvYgH5YgXNIGxicUu+hJvDNIirl1eytvl+jOtBUYStp
p/9CkjgFDFd+m1rQvRQgCPKXWBereWyOQgq7G/kGdpnr4/sRc5yS5yUSh0Krb0BXBNKU4m+k
9PiWPNTXgHN+U8CcmxFc51Eei/iBbwU+ilJ4np8XuQmYLRLQl41owJNNzzMWoLF/2ai0Wwqo
41fw85kytQsp0KPZhjqTvbNmx5lPQtLZiB38f21Uny/gubNIAHdTpVZAM/io6ZUtdtCebzLk
cFRGj8m3mXpZbex6Jdvu4PgualCvmn1LqDV0p9QD/tNhYz40UejhJPxGVD4Tla9U8P50mFGn
aLtTOAMk0GRU1IWShPbi81iF9naOPaJiXgGNAbbzVfzeW4H6nitg12NYDENimstfha2TvTNG
Ou6h4ELDucU42ITHHA8EKUdtILTBkZkI3veNwfMtpT2/Nzh+kNeGav0dkgQEC0E//2hMB71n
KwWx1+wboaAfSKmXJYH5oPheVP57VP4kKo9U4OTTLENpzmHHFCWBXGAOqHf4VPYG5WbDzQVq
7CB72/AYqMNflWTa8CsF/AWayvsa9qJ7qDV8KzBR8Jz/kz3oegr7SpIMSOCXQe8uJAGrgbRT
sAdT6uStFMGGUO8MhHcG//tLwTWWkky/Jvlpu4YlPyehvefhYF87/ROq7Rwz513Me3cHRInf
fxCVW0kEfyLlxXngv/ZRw2h30cmWT2CYAr+BJHASBavSlNiz+bnZCIRV2e+g6q3HWLtaF9z8
Oh11B41KDSK4jpqGDUQ6g8/ZzV5eNQv8j5+k9JCae9AS1HwS0o7geZeyF+4zx7ZS2H8dCGon
/0+o2czn/wjz9nUE6rf9/zNIbkOsz4+xDu5h/f2lJM7UVt5b35Wt64dIhhtTNJpimsCWwBfi
voEMOQaFQnmcjW55IHDlmAOLjaPsoBEUmBv/xZgBQH9gchyjrwAC/yIdczt47n1smOHQVR+f
95cFTIuNwfe5PH6f2beamsargWCfy//QFwgCbPbLKHioowuj8u+j8tOUOlkto8f8gfNYx78y
+zSLUicJ1Cb6eJHXuY7/QYGw4HMkP9jLOisvqtAxKMbJ+A4XnWySQC+FsXmM91IbdWvQe1xK
h+F69s4308a1KupRqvLAP7EnUzxNAUkzH6DK/zilp4Wt//Ng/4Upvo5z2OMfLCBI9hm38Tnv
McfrZKrQ7u4kKT4e7G8hObxZQEWHVnIvCfl1kpCuXXBDYJ5sovPymBF0K/ADY+jJNVz5lAK+
GccUJ4EeNu7OCu+hDeW97GlfNQ0SPednqbJ/nkJ3s+SPp2sPexq3fxH8tpW9fX+wf5nxZ1is
pFDuD9Tt1RSc/sCBaR2FTca/EXr7HzFOSPTM/0q/xfdTVH4dlfhGsB+mzgX8P+F/fID1VCh2
Im3sfqDMd1NJR6C+iJljJBJHA5PAq+x5Otlrfk/Knzi0kEK5ywglGs5nqAlcbXouMQKmDWw2
hfRFyR8iEzoEHwx6a5z3ARm96Ad6WsQrvB30+rMolA8H11kkoyP61nL/rpT/uT4wk3QU4sXg
uOUkkkdT/C+bUggNGsafVqi6VwP6n+dIfvSjIyMkIMa+1ICWcklgJXtV9OLqPV9LZ9Z6oxav
Zg+9NeipZvN+m1NU8wHTI6mgdrBX3RwIlDoS7w8cYq3UNuziIUpcLwfP8h5J1gyUFMG0ST0u
5H1CuxymyOWmLqwKf3UBk6seelxdEfk0+j16xLWAzJBAE1VBzUFfKZbTPu83AnIHBe8205Da
2PO+FjT8M/h9p+THBBRrgCdRqKwTbT7vsVXyo/d+l4K3KyAGHHsmCeEI1eDL+IxbCzyD/Q7f
xlsyOsHHdik8utI7AWp7tfCaJHEWC118sqkJ7DS2K+a3byjzPHUKqoPsEzQDPmuucSp73mdl
tNf67MBMsOTUSTPFTjhaQgHeGGgrXWzEL6doKvBX7Db7+tno1/CZDkqSM/GnUl5Cjtuj8lcp
PX6jYsiYhD6RKKMkgJV5bpUkz2A5QGNZxe113L6TdvK3zHFnUM3emHKNzgJmAogE6co+GfSg
FwekpT3+h0gCe1Ouj167O+iRb6Kf4kPsuW8jgfSVqZ73FDAZGhX4vxiNwZCsTyTKGAnkTE+s
4cOXSHmxAovYk++nbX8fVeSbJN+7fDqPf87cs8mYE2lmwiUkldCG7pL8IB/FC/Q77Evp4Z6V
0c4+XYD0r2RiliVrZGidKxGfQoIfdjGqWd3XhSbQRyG9VCobKhyhin4fz3svBcz+uXdJ+kQb
Hb57VkYPSa2SJGjHVpiGE4dBPt+iUPfK6GjFEZJBWOE58Th5W4evGhOtzUmgalBzq+r1WykJ
DEsyZLa8zHN0PYITSAAIDHoqUJHn0t6GlnEoYL/OQKPYxWsiFBhRhv9b8lNt54ow6YDk5/TT
/b3BsWnn+nh4vokzQ8YeOOYoTzans23n6okErJ29mL30UImHXGkEeT1V6/D4NSwPy+ixZ1Xr
8fv/lfy05jj+9hSBvZVMerCAOp6rQHWfKglQJ0ol1YxIjupiQGoUhzEWElB1/WT23ptKNJyL
jTDflvLHcMy13MboAEYJtpvfBijUfyz52XPhQPyhjB5JaAp8Fd6DT6w50E9t8CwSvJtKU0Dl
qBToXTFm3irJzMBCgoZjLuK2HQ4Mj19uVP6WFJKAUP+qiH2USyGCcnp9R+WawKAkKxKtkfIn
kjmmEAnomHyzJNNeCwnaLNo1II29BQQT258noXQbcyOX4o8op6dyVFcTwHtAvMd1kkzqcmSM
BPolGSZEL/9QkZ4DJsB/lDgJyPNFrrnJX0VDQYdST3NzK7uaANRBOPswdDezhAOjHHXR1ffG
AiIrj1MTRPHFSDJGArrYBbBYCs8mq0SYJ0vww16sVmSUtgZjrsDvAOL0u7gNOxyTjBB1OVnL
hMMk0GXo2p0EskcCdiGKqWLnShmCWK375goQBOYovE/i2ZZLqXqvliRL8eZJJAG0gYPUAjAp
a7uLUrZIAI1WnXfTpbEzz2IkYpHZxvyFFfx/D1ZZG0CAFFYSPpO9vObt+zJ7WjzHfZL4XuBY
hW8FcxmQELV7EuvtVXYEMAnfI55vMHMkAKhjCI0XQ0WNujYdVvvRSTA7SGoaiox4iE1F1PhC
poUVBp3lqBmSL2GvDuI51Zw7g8fNkWRthnYSwLfNc4BsEUvxn2X0TMhaAuagriY1f5JNOsck
kcBmSUYIGhlnUviQt0+n/N4ucV7+hZI+apELenOhTRwKwUJe81z26oOSzMUX3vMfTA//fyTO
eKTJTnQU5umUZzgwyZoAnlGnWc9xMcomCWAW3lskgUYeK0Yw03EKo9q1myQ/DZpFBxs+7PRZ
3Ab+RkYPlaLX/7DEE66+zN/Re/4zf/+CJA61HqrXrxsy0fUMD6aYMHtkdAqyWvtSnuH/0wAv
n0iUMRLYTyLoonpbT/ZgOZ73nFFlh9gbN/G/fFHiRJ/bg+Pn0k+whoKt4bPXUshf5Dl2vQEE
SSHk2Q6T7jbag9UaOoLe/RySbJj74DySycgk17P+j8XiKxJljgQ0nl/VwUXsUesl6WQxz7vd
h94LDrdpNAGQA/FsEttmGT0rEYlLMIUa6xL+mdmPnv18GR3u3EU/Q9oahOHoCsyBkyQ/F6Eu
1Tacor3g/GOTXM89NFdOliTfoCMjJGDzAWpP0FlHJKDLe/dRrR8p8GzovU6jug3BesMIry5B
bvMOXEYN6Jsp5LJDRg+TnSL5uQ70OtMlWTvQPsug5K8/uJJEuz8gYJDDxjpQv1G3uniq5xvM
oCaAxqzx4ytkbMuSTbT6fy17dmgn8KDrun0ggRskSWKiRLaAWoBduquFx+l6e9bht9gIuw4t
zqf28EvJz2nQxN9fk/w1BReScLamaAJ43scDjWFH0ON38n4/KPBOaoleo7kscVHKnk8A2ECb
t5mNeDLVf6w+fD/VZHjdX2IP/DkS1cWSePpVWJaZHk2M6q2OOKuy6yjAagpgO8mmjT11uMrR
UhLEzwIh7WKv/1SwX52rGok5jSTys6DHB4HMMM8YLkJaa2j26VYXpWySQE/Q6CcTa0lGd0v+
Cj0QWGQfsmnGVPCWsKctNL3ZCtYSo7Jr4/851fqNMjpV2nwKazjEuIbkFCZMnUXBPmq0gGXc
30JfhGo7mp3pOWo+f0/imwwgZ+OHJYkVcGTMJ/Aae8sumfxhwln8fC4QaHjs/4ekT2JaSfU7
dGjBZn872KfeewwF3l6m6g31Phxm7KIZFa6KBA3jN+a6zSQCJGPFUmYnUTtAfT9MTeQmmfw4
jUHj//BhwgxqAgPs6bpkcseKm9gIj6T0+LDfvyLpE4OWS/6ipHoOVNtw2fLF7KUfCggA5HAJ
99v//h5qArvMtTVhargSsUYPPpgiYG3UZrZSA3jU+F4uJTGtk8kfol0lnnQ0kyQAvGFs5RMn
6T90UJC2GFs5DOFNixNI60WXUhPYGBy7hD3xa5LvXNTZfI8HAnAONQHr1DuN5sDXg3vqUubn
GLUefgY4M4ckfYEXm0JtMtY00HrZbPwrPpswoyTwW35i2Oo8STL51rJXaqdN+i+SnxS00HPk
2HMtS/ntDPbgzxa417FAm4Dgvin5UX26huGjATFglOItGR0B+HPa+E8Gz7i+DJNMJlkDQMBY
N0msS3w2YSZJQIF04mfK5OSbm8+eemuKoFzK/aHdr6MZ4fJgp7MH35UiYM1U27eQYEB6vyex
MzIX2P3wmP99cO1tUblRRsf868pGjYg9xiT0fIMZJQGr/s2dpJ5pIUno5RQ7FcOG16WQQB+F
PSSOuRTKgUDth0qOOQbfpwp8Gnv7JySed2BV5H1U69OWU9tQRL2e7F69EuhzHpXEOdjl4pRN
EniF9iucVmsDYagVNFw3XP67i8+1L+WcfqrnKw0RwK/wXqrxoUDC+fZHEi940kbCeZBlODge
JPKpEip8Jb/VOxnoSMqZLk7ZJIFd7BkvpXBMhpNK1zUYDkgIDsMXZfRsuyaqsSANJO34BPef
Sn/AgynH59i731ugF8/yXHpNINvh4pRNEhgyQgbbfIXUNsGIxtIDs03vBIFGtCDm4h9MOQ+E
8SWJg2102bP7qBXsTOntQnXdfs96Mo29NJVQ/6WSzjqmIAnYOQToRdsnQR3dyPtjsdF/ISlc
LvFw3t1SOI/gQ1I4XXopdT0rgl9Iy8H+aRT8NfTJQBO4Rny58syRAKBzCCYreu1r/MRwHQJ9
EMp7FwXch6zGT7IAHKYYOUE8yDtYz3bqNdAsvhhJZkmgjyp3J3uFDTX+D1Dtv1JhT+Yo3Luv
ZA+PSMhV1O6QQmyRFF6OHp0AZlKu83rPJgnA+67TduutJ8hlQHCt36Kc/zuTwtxFFf5sfod3
fxk1ujStDqNAiHWAH2gHzUC8d/iCniYBDGfMXHISILZLkmpsubhzaLJIzmZM0vfaSTt9rjlu
LdX6Qr36cQo7tDv4VV4gATwpSYITF3IngVHq9nOSJN101A4gXERLajrzWZK/QMl8KRzEowKN
gCeM9XdLPAFrmNsY9ektw8zyJeRcE/g3dPOz3lKNNZpKX8hOb6Nt3k6TayV7dAyFniSFnbL7
jbDvIFk/z228Mzj4do5BeHMu+E4CYQNABN2gJLPJHGMjgzMp4JqZaA4FHA66k1OEHQ45BD5t
pn3/G9rs3VTpX5RkivdOF1hHNc0BpPPSpJMgAl9qvHJgivG1BWz1I+y9d0uS9mwn7XQE6+wj
+W4v832lqfNOEE4C48KIJLH7K7xaK9amWgwBwDH3C4mHWhHB+Gseh/o9ZOo5FNreMu/l6ryj
KuYA5tnrRJL5KT1Po6rntXr2o5LMwYBH/nrxBB2OBtMEhtlzoRFfZOzQRu5lNCUYPO49VSQF
ve7rrD9kNmouQEYehOOoWxKwwFz7RbRPa9Fow3uEdm+pZwBhqfcd25dz/4USB9LA1PljqV7C
DH02ndIMb79d1stVd0fDkIA2YgxpdUnt4vZzJezeMDFoF4UM3nR44leRtJZxX3PKPS6pIgnY
WAshISHN2RZvno5GIwF4r3UxkuUUmlr3XDP52UlBOp2Cvpz7EceQNtRm8SL/i11gpBaLrnZL
kq+vxZumoxFJYB+FB6MDS8qwYcdi62rcu1BI0bOv5T7Majvf9KZpgj5oyh4+7xt8dvTEun6h
psz626jcLNVddFX/d58k4ddt3jQdjUgCe6jCrqCKXUnPaePej1LgppNMNEJOQ2I1A1BbEWE5
QqGGMG+WZP0/hMjqJJdyzJXHSQIaa1/tSEiNAbDpxx2OhiGBEyWJFlxE30ApEkBPvoCfH+J5
2pNPl9LTV7VXR4pwJBfBGDrCZPdS6A8VEdymAmRkg2dekWQRkGqr6MOSJGhZ7k3T0YgkMGR6
MjjZ3m1sXPw2mzY6vp/CYxaV6NHVRh8JessfUJXvZxmUyle/yZWx3y6/vUBq56ybI76sl6MB
SQA99mlm+/4yBFyB3rtDkjz2Old9G1X4Y6a3rCVw390kgVqsq6AjLK3m3XhsgKNhSOCI2T4u
xeer/4K2OlYw6mWvDpOgR9LnHaQJQi2EwwZBIW7grhqQALQajGD8jtQ+S5PDSWBcgDBrXoET
uG+Q+/YYjQA5AL8go8NiN1Wouteqd7TrEtRi7vwgCXSZk4Cj0UgAQHZfOOOW8vuPo/JIg6uz
B42fo4PkVa31FV6TZA5BZ43JzuEkMG7oUuC3lThGGqxxqx8CBHB6lXtnu47DXPcJOBqNBHIT
dEy9AUE8utTawirfK0dzCVjrBOBoRHNgKgLDhDtIAktqQGaaDmwO79njr8DhJDC5QIyChhG3
1kBF12XRMdza5STgcBKYfFg7/ZwaqOibJYlSnO3V73ASmHzY9Q5X1UBFR9pvjVJc7NXvcBKo
DyByUVferbaKPmi253nVO5wE6gM7aBZ0GL+ARaHJSJVAr4EhSQ1VnuFV73ASqA9gVuJbEo8O
dBQQ+NBXoLkP5pM4MCGoj9uaMbifQr89OFdDlTu96h1OAvUBREFilADh0Mg7+FABIkCug7Mk
Tra6mjY9TIg2o+rb7cO8LiZMPROVR0kIWE/gVpoDHivgcBKoAwwYFX2VjF50Fb32xyROUpqW
p1DtfPTsR8y2AteF4/GWqHxR4vkK+6U2jkiHk4CjDFsdPfHPKeyYSDSdJICe/8+j8tFA8OFE
ROQfhvt+YvYjBuAgTQNNdLqUWgM0iK6ofJfHzSMBLHAScDgJ1Ad28nM17fyLo/JlSVZcQm//
sMRLeWOYr1vinIHlLCICMrmGmkAXy3GvcoeTQH1A7fEdFEzY9P8s8azCZgo/Ep/8XVSekvIS
q4aAHwC5CrCwqyZjmcZ77vVX4HASqA9zADjB2PAAMg39hRTOOGTPDfMXFiOHNhLOjySZS+Bw
OAlMsiZgU5uh9/+sxKMEvUaYQwHX7Stp179cRBtYSPNCHYbILfB18ZEBh5NA3QBquS6uAtv/
3qAnzxXRBJBjARmW/lRG51RAuZTmhF3R+btS3TUQHQ4ngQrNgVZJRgB2lmHnh1gdmAX4ROKQ
j0TlDslPyPr9qPy1VC+DkcPhJDAGc2BIkmCfVSmqf7FzYQacK0l8AQjlP0q8BPkaczz8AN+O
yp8FPgSHw0mgDgAHHTz3WJHoOqrr35FkkZOhAsTQQqFHynLEFCCh6qdpAlgfA2IK7onKg5K+
mGq9aEXVfK5Sy9aF905beboRU9g5CTSQRvAFCvSHTcEMQ0QTIqPy2xLHBqjWgLkGayXJwHxr
cE34GH4po0cY6tUPkKsyweQqvHcaWVoycH+Kk8CEo5e9OOL8MTqwwpRyoWnYMUkIcwR+JfHI
Q733YDBlzpM4CKoay87nqDW1SRJmjfapa1JqgpW93DfCz9nGXEPsBiIwX5J4HUknACeBqgA2
PUYGEA58CQUDPf18/q6LparA93F7GXv9WyhEwzXsZcfTO0/jNuZF/CPNFmg0WC9xnhHAVqMB
Yf/KQKCx3W6u3Z/yXdO6H+T1Zptz9TmOmnOmmW1dyPYEalhXSvVXjHISyDh66CO4n8KiE4dm
s4dqYcPWXvMn/L6lQf6faiaLSHA3UhhBeD+bhOcBmbwlSY6Fw/w8yZDBMb6DZqnNsnFOAhlH
qL73GnJIwwb6B8IZiPX636axfahjsz1FKDeT/GZT49GFWuAfeUPijMlbjbaw32hJ+MQQ6S6j
UWyjadVFs2MGzz/I6/cbgt3Hz3ZzfwzDYri1U/IzNDmcBKqCStV3NOYPSjIDsd7/m3rdt1NQ
74vKBexlYQ7dLknwlOIIbfVjxs9RSzPnX6PyCclPD+9wEqgbHGSPNV/Km1lYT2QA7KDd3cxe
uqfM8yfDbABmeZNzEqhHH4JQ1d3SgM8/LEmw1FBgOtSjU/MUb3JOAvWGXbSVsZ7hujoXoDTM
liS/4v5J7u0LAWbW6xIHYi3zJuckUG9Q27m1TgWoFIZoDhylaVCPJAZHoToZ3/Ym5yRQbzhE
4TmnQZ/fmgPDdfqMbUYD2ONNzkmg3jBAX8AH2WMNN9jzY3gOY/OdJLJNY7yOag8YKrWjCOPR
jPSadqRikTc5J4F6BARnreRHvTWSOaBxAONZGUkJANGHCL++awJNiiPUts6S/KnZDieBugEC
hpBS/DxuNxKsY3BonD03Vly+jtt3TcCz6XNg6PWANzMngXoGeio4Bq8nCTTS6ADU9pEJutbF
/GyvgmnUzU+PGHQSqEsMshed04DPDmGdPgHXQUKWW7ity69P5LoKqgnMkcYI0XYSyBCa2ONh
6GrRONXpyQAIYCIWSMVsxC5uw5Pvi6s4CWTSL7BKGi/hBebxY9htLIukqvcfptDVNIt+Sr8A
iGDTBD7noLmXw0mgLoFEIpiWi9lyjRQ+fMT4BFqNcJdDZDmjBSCaD6nVf0gSQF08MoGEqKMC
MDNmuTngJFCvgDlwhjTmHIKxAvY5sjJ1R+V/SRx6vI1aUesECquSALSWPm9qTgL1CDgGEdRS
aInzevRl5FL+Q7k+DU248j5qAXdLPD0ZpIC4g9VV6rE1z4H7G5wE6gYqMN3SOEuLhSnPxzo6
ADPiAzQpHjVEglWWkKmoawKFVet2hvsFnATqFWjsWMB0qdS/c1ATi8yV/JDcwRKaQniNTmo+
yLG43pzzQFT+vcT5ACcqeErNgcOSP+XZ4SRQV8Dy5ddTZW2EBCOD7M1Himg4xUyJs+gH+WJw
zisSh/m+V+Kl2ibCbGkzmoAPPzoJ1C2QcvzqoHetZ21A4/3D3rYcoUSQ0Y38rzjvVEnyAq7h
58kSz6mYCG2gNTBDHE4CdYl9FIiJtIWrjU5J5g5UYmvDDLiK23dG5U0KPiYhnWCOe884SUC1
i21BPZdjsjgJOCYFyDW4WhpnIpG1rw+UIVzqT/icJHkJT+J1ttA8UA9+pyRRhOMFRhyOc7u5
DJPFScCrYFJxoSRLnNcr7KrMlZgDQr/HdZJkJ8Y1MH6vOQSmUVOAo3S5TEysf4fRMNwn4CRQ
t8A4+S8lmUNQz+pq2nPNLaOHhS8A6b/3kwB6UogFQMjwa9SKlsjEBlD1e1NzEqhn/Dgqn28g
e7XfmASHy9Ac0MNjnYK/SemNw4VEn47KTTJ6gZOxYK7RVuZLddZNdBJwTJjtikZ6pkzsBJpq
Pm+p5J12qfCP8Zyvl6Fp/JZCu3CCn9mDhZwE6hqYlYex7IsbhARajS9gqITpsII9+yNSPDoy
1IJupH9gPH4BjbuYRpPE4SRQl2ii7QsnWVeDPPN0GR02XMiUmU6i2CilowmB3RKPHmyR8Uf5
wel4nFqIOwWdBBqOGOrZNzBizIFCjkH9Dy9LvMhKXxn/Db8hlPh8ozWMty5OMH4Mh5NAXQNC
1SjLZR0z251FenaddNRTJgFo790j4089DizmJ0wXTNd2x6CTQF0DEXS3sWftbYC20mb8A6VU
fClDoCs5tlzYGAb3CTgJ1D2gMiO9ViOsVDwgyao+9Tw7z85wPOhNzEmg3vEcPxsty1Brg5CA
TyV2EqhbqNr7vMRDYo2itrY3wDOi9z8SkJVPIHISqGsgdPiKqDzYAA21EbztPSQCzFLsmEBf
g5OAo2oawesSRw1OZLLNaqCpQdTshUb4xTUBJ4FGQKPYrUiHpst+zysgWDBrjpYhcGr+DJtt
tMVj5jNsp9ONzY/px5ghuDfwU6AukZykmccddE3ASaARgLh5hNhO9Ay6idQAIETzJZn1iPUD
kDb8bcl3Euq2BhV1m/0vUUCRWfgUSZZkm2fMIsWewP/QZnp3RBciO1GXJE5AHRY8Ys6pJA+i
k4BjUoFGjTj3s+qQBAoJD4TuwxVe64hMTDq1FcFzWNjrI6AJOQrWexNzEqh3PEfhx0Si++vQ
Z6F4NSqbJZ4evIW9vRXC6dynzsM32OMvSumd9ZgD1AYOSZxsVM2NZ6kJvE5NAQuUPG5U/t9S
c1IcpqaC+z0jcf7G1SRYh5NA3QN26w6p/2mvEOBbaIs/T2Gcxt+OFiAOa/+X8hX8lSThyDuD
Y8tV5/W4B/ndhiI7nATqFjnTe9UzjlID2GIE66j5DzaXgCWD4RKCqL8NSDI60hQIfi44tti+
JsmfPZhzInASaASgl53DXnNY6tORlSvS20uKwEqJ42UMx5dzbKX3dxLwKqgL7KY5APt5uzda
h5NANoGx798lCfiQlsNJIGPQ5Bsrx3GNpgpUaIfDSaDOgOE3XZMPiTnHkxYrVwYxOBxOAnUG
DBMiSu5sGftQoQo/ouk+LnFEn2fVcTgJNBCQlBN59iqZrpvmO7gsKrdKHJ77Z24OOJwE6h8Q
ZMTFI3JQc++Xm4I8FxDBlVG5g9u/dQJwOAk0Bqax99cZcYvHYAaACP5rVL5AIumWOPTW4XAS
aADodNp91AaWlKE5qPDjvHcb4cf5l9IXsM2r1uEk0DjYRqHGBJ3OMnt/TKr5tsTORJgPWL0H
k2gu4HXcFHA4CTSQT0AFFiMDF0l5KcjPoi8BK/8+KnHc/WX87YmUazscTgJ1CiukQ1I605Ae
D8F/UvIX+UCuwqOSZDF2OJwEGgzfjMoa+gVKaQJ21p1QK8Dcg9fE02o5nAQaFrpI6RVS+UrF
IA4k5XjAhd/hJNCYsGsPnDOG8xFf0Gn8AQ6Hk0CDYZifSLm1fAznI4kn8hK84lXpcBJobDwV
lXOjMpM2fzke/iaSwMMSp+ZyOJwEGhiIHFwk5aUgV4LA0OIcSRYMdTicBBoYmlugnBTkqiFg
shCCh34q7hR0OAk0PLaSCDQFeTlCravubPLqczgJNDY00ShyDi4vwx+gv386KvslTkzicDgJ
NPj7mEnbHotnIACoVNAQiACJRLAAR79XocNJoLFxjJrAjyWeCDS/BAlAC7hBYkcizAHMHfBs
Qg4ngQbGUfbsGCYcicoZUtg5qKaDzjpEjMA8r0KHk0DjI0cCwEQizChcJ0kgkfUDKGH8g8QT
hvrF05U7nASmBAGoWYDFPd8n8Rp9PSnHWEHfEJCEw+Ek0OBAz4/EIMgWdKhM4ij03eFwEmhQ
PB2Vm6S8yEGHw0lgimoDDoeTQIaB2YBvShI+3OTqvsNJIFtAwBAiBzvd3nc4CWQTGALEsN/V
UXlQ4hECH/5zOAlkCBD2N6JyucRThX3oz+EkkEE8H5UPGVJwInA4CWQMSDCCWIFrJI4MPOpV
4nASyB4JICT4ZScAh5NA9gDVH0ODcA5eEpX1bg44nASyBV1wFNOEB80+h8NJIEOACXBPVL4h
8WrD671KHE4C2dMGfi3xECFMgqdcG3A4CWQTWJDkqqjcJaXTjTkcTgJTDJo38DeSLDTqcDgJ
ZAjIMoQU5PvdFHA4CWQTSDO2xc0Bh5NAdoHe/wdR+VFU3inJCIFPJnI4CWQMEP6XAnJwOJwE
MgIEDWExkk9G5a+dABxOAtkD1ifERKI/jMrXXBtwOAlkDxgmfIvbIINe8XkEDieBTGGnxCsO
ny/xcmMOh5NAxgC1/0tR+XpUFkj+YiQOh5NABtBETQCzCVdy2/0BDieBjGkC6g+4QuLEo04C
DieBjGFuVJZJPFT4NWoDDoeTQIaAyUNPROU6ieMGHA4ngYz5BKD+PyBxCnKHw0kgo8D6hJ00
CzZ4dTicBLKHvfxc6VXhcBLIFsKRAJ9W7HASyCi2ReX79At45KDDSSCjGsGPo3JBVI54dTic
BLIJDA+eFJWLo/KQV4fDSSB72MHPG50EHE4C2QQiBbE+YbtXhcNJIJtArADyCyzzqnA4CWQX
j0Xlv0dlocTTij3pqMNJIGN4nZ+eW8DhJJBBoNdH1mFMKBrhPtcCHE4CGUKOBNARlWslXphk
LOZAsXOanFycBBz1rQlAOPdF5RqJcwsMj5FM7DXPpGaxzavYScBR/5oAgGHCiyTONjQWEjg1
KrdIvOw5CkKRD0fllxJPWV4n7nB0EnDUNZ4gCYxFi1gblb/jvn+ij+FtkkKXxNmN1zkBOAk4
6huvROU0yV+fsBwgTdnD7PWRwlxHF9bRxPhyVGZ59ToJOOrfJ7CHJsGCCk0JLGWGxCTflyTG
QH+7Jyo3R2WOmwJOAo769wnAD4B4gUoTjOjxD6T8Np2fQ04ATgKOxgDWKLwwKjOjMlDG8TNp
QrxoTIhpUTnK7SVRWRSVp7xqnQQcjYFdUVlFG74cEsBxWMDkQWoSTeYTeL/EMQgvBqaHw0nA
UaeAAJ8s8RBfOYAP4CMyOiEJBP1U+gPulTgAyeEk4GgAYITgNalsWnFPSi+PiUg/iEqfxOsd
OpwEHA2C7RInGUGWobGuSARz4u6ozJc4UUk4YuBwEnDUOQ5I+SMETYEJ8H7T8/++IRIXficB
RwNBRwhCFb8YctQAQACYiPTfxNc2dBJwNCxejsrVEg//DZVBBOoE/Da/QxtYF2gKrgk4CTga
CN0SR/hhjL+UVz9HsvhmVNZE5cOGAFz4nQQcDQp1Dl4u5eUW+FJULo3KZ6Nyv1efw0mgsWEF
vquM3vyGqNwk8byBuyr0IzicBBx1jlNKCPSVUfmGxPkHXpA4NkCDhtrpTzjE7wNODk4CjsYC
zID3Shw5mBY+DIG/jwQA3MkCEtBUZc38jqQif+BE4CTgaCxgJSKsVIzJQWlDfbMlTkKieNv0
+gpML0bYMGYmHvMqdRJwNAa0l95FLWBZARJA3sCP8/hCvTv2byShDJfhX3A4CTjqCJgZuDsq
K0qQhRQhAOBer0onAUdjAj03Mg2dI6VTieckP3zY4STgmCJA+PC/k9jJ11tEI0CMwBckdhTe
Lx4l6CTgVTBlgIzBcOy1FyEBZBn+alS+G5XHXfgdTgJTC6/ws0viKMIQmCPwxaj8VPIDhZwI
nAQcUwT7KfzLJc4fqPZ/S1T+Mirvkzg24N4UE8HhJOCYAkBwD5yDF1LQIdxYY+A2iRcp+YAk
E4yUIJwAHE4CUwxvs8cXEgBmCyJ78AepJfiogGNSSMAOWRULVClnWKvYGLcUOS5taCxX4bNN
hP2cdv805ErY7IWe9QmSAMKE/zwqZ0scTrw95b86agu8k56skkCpQJVyz8+Vcf1Cx+XKODY3
xvuPtS7KuWauwv1P8xNRg1hc5FxJRgrK+a9KDog+HEohJOxHSDHWKcB6BXYhVOQpwOIlI/zU
uQjNwTX7+B2hzId4PZ3TMMg2Od1ct1mSbMr9vL6YY5rNtWfzmYYkP6OyJmLV/fYa883/GDLn
tNKfIvy9n8dON+cPm2vbfS3BM/ZzH55vH68j5hj7PP3mOZfwnD4eE15br6vPdzp/6zbP327O
W8jfsf2imoe1MgeajI3ay08xlTfAfc3m5WEbS2ztNRWCh381OA77kXF3lmksqEQ4ys40lYT7
dHG7g5/25Q+zklpMpenvffxtLhvq0qjMkPyhuEF+zpM471+baZxdfDF6HApyACwzAmAxL2iU
g+Z6wuvrvnk8rpX3OZn7V0flL7h/pyTrCx4Ktg9zGw1zDrcX0b+gzzDE3xaxsQ2mCM1y3lef
Sxt3RyAQGtaM9Ga7eb12Iyzt5jpzzH+eTgEaDI6bz3eB5z3N1K3FMv5PPM9B8/xzzDmHDYEJ
r9lmjt3Be51k/uNb/N7Kd9LB55ghyaQsFUpoY6fy/qeRRPV32+b38xoj1OS0rR/kMW0pbe4w
6+Zsft/C+88w9d8c1Ml6aon/RgLK/ucZpphrGpeYPzloHmIJPzv54MLGNYfnLTcNSRvPMlbm
IlPZIxTi0/jA9p6zTc9xMj/fDP6MHjM92H+Q97G9TKfpnY6bXs3+LvztBH5qY2+bYGIcrMI1
9br4j5ey1Bu6zPaKcZwbotMISWfK78fZhmcbYrftabYh6xGWPtPuVpvrD7LNon1t5vc1bEuL
+LkpaOOrjXBvZlu3xDbHtHmVCQnI1BJYWyAv8w1RaF0d4bMMBqQkRjb/vyaAA/6OPecJVW4E
Z6XsW1Pi5SoT9pmXqAy4x1TWDNOzdZjfWs0ftwt1DAXag76kQdMrvm16qfP5DAfNMSOmd1rE
7T3c1vMOkChnmf/7XMqzHKKWoT3xkOTP89f/PMNoPt38vpS/n8s6+lueO9fcdw7/zz7z34f4
zFfw8xk2sP1G0ziH+4F3cf8B82yHjYqL77vYyy822lIL6+10XuMF85+0LjrMsTu4T7XB5YEG
pb1zP4/B76/z3FeMttBuOoq9phPoM8I0wjpawGe36nl70FbO4PX3UH6OGRKxvfqgka9j5j7H
ApNn0MjidPNsR037OBbcy8qv3ddmSOd3zHtWUkC93UbyHbIXyfEFdpAA0KgeDYRAG88ho8qp
2qEN06qu80zjOoff3zA266clDltVtbuTD9nK8gzPUZUbyTS3BvaaVftV6NuNPTVo1PmWYFtt
2hOl8PJdansdNXbxWtaPfUnHzLXrIfjmDj7nVyo8r1aTh9aN8Ty7/PqG4Lctkr48e28Z19V3
N5DiuBtIucb2AtfpKfM+9tpSYt9AhXU0XKSOerjvPJLAvFATaKfAAT8gWxRDS4E/VqhxtaQ8
4ER7SntTXpj6IoZTKipX4UtLq9iBCh19tcAP2audWqTBjsWfU80EI568pHY4FHTgqY7BwxUy
jozh+FoNlWSxYUEFvIja3PYJrMOcv6cphVkhCewLvMSOxsfyAiqyI9tQOT8lJAE7/upobMAk
gsNsiVeFIwUzipkDmFyCXPTdXk8Nj8cknkPgtrajpLmvcQIYuoEDD8NErV5PDQ+MjCySwtmH
HdmFjuItDTUB9BaYY36VlF7KylH/wHg4RgcwVrzBq8Nh0JqmCSgQwNIs5Y0OOOobyDIEZ+9q
JwFHgAOBRpBHAi+TCA54PTU84BxERNs8rwpHAcxLIwFFm9fPlGH8c7jtDkKHYjD4/P9hw9ZW
cMfg1ADCrK+X0dGajmyjrZg5oD96sNDUACIGPyXx9NINrg04AjMg1RzQWW/7vJ6mBDCxCrPS
ynEOhslEMLnqqFSeBcpR/ygYLNRkbISdXk9TAhBmxH+8o8zjIfg/5vZiNpIDhlCW0sS4Rzz2
oJGRGiwEdPDFA51eT1MC6K13UBMo5RfISeIL0uQZ50uSbUeTfzxHEnA0vibQGZLAiOTnAxgv
ykng6agetM6xyvA1Evt7SjkH8f4/IvlJWzRfHxyMCCv/mWsBDY9dhXwCSIyhGXQmYuLJeJOL
Oiam/hE09Cd8p71lnNMjhad5o3NY51Xb8Ggr5BMA4yPvGXLSzZqAG82kuoFkJf2SZP/xXqS2
6OFLnz2Oa7RQE0D7eNWrtOHRxc/ekASgPur84kNjvPgNUbmYasYySbKdaibUQaqbPf4eagYk
q3xYkkxQpUwIoW9gFtsBiBzrFyCS9FNsOJWYdzNpTrg2WD/Q0b93hSTQKknyxrEAWYq/RJaB
82iHUTnQkG6eIF+DozJA80K+xneWUOVVsPEekYhkhXlfyMZ7Nc+vdNESJ4D6w3zzbvJIwC6A
UIk5oI3nbBLAeqqOvcExyHKDWW19/g5qDvgDkF++3KE9JIPF0OJqmhK/GaMvoBa5CR1jxygS
GG9Wocv5eZ+kO6DgF9gk5Yevhll7xzraUCz770RdZyyCUUug3m8kuQ+UeDaYap+mZoistN+K
ynUSZy/eUOGz1yI3oaNyHArN/hNN76853+dU+KJhbyKx5baoPJ5yDIJMMOb8lxUIRKnlulQo
S6UNL2S6LJBkJRzFXElWMxqogEjC33S5rlCrOsTr1poIdEGK2Sn+mHB1Yv0+QK3uc1H5UVSu
FJ+SPNVwOCSBVDWhTEDNR8jxs1J4GOqRqDyVItgzzT3tOndKLislWRWpxwioNtZP0PzAohN2
FaR99E08lfIst/PzU8F+OC3vpOq8PuVZL+W9WiV/0ZIHAnUZ9jRy/7cbUu0g6dwmtU/a0i3J
EmxbUghA6xna2s6A2F7k+UtdZqYMVEa7QhLYL/lLGFUC9PJw/j1ToIffbgTO/gah+jL9EbrA
CRor5sEjXBWrIcFZOY/kcJDaxF3m2lfwOnruMp6PVY4eThFmENZHo/I/gv06DIbjtxb4n39M
1fhhksB1tJm/k2Ia4bdbo/ILktiN3HeA6nYtNYHtFP7TA7JSAvgvEscSPMLPYUMEQ6zXRS47
UwZzC/kEgLF472dSeHDug2XagEoEOE+X49ojydJd19G0+IYkMes3S7JCkd4Df+ZsCuVHJX+p
pl+ZntjiDH5uC/a/nwRyXYrKrMKCZ/t+VP6Q+2H6fF3yE7PiOCT4RL5GuwLQBpLDZCX5GORz
3RXshwbwBZJZt4xemOWIVGcdRsfkQcOFWy0JqFD2j/GCEOT7pbzxf/UWo3e8lkL1SdP44IC6
gOr0/eY8JMeYYYgGeB/33VbAht+TYrevpUYxbGz3Tl7jESk85RYaxHw+l2JYkvUC7XHn00yx
hNdKQXxskhxlUPOvkmQOgT7XxZIssPmLFG2tnc++2WVnymHUWoQtkr/wYrk4i43oqSI9fhoR
fIzbXwsapa7c+uvgGu1siHZFnfOMMM5MYbrvpNx7FX//n7yWCsCP2KsX0mQuJ+E8Z54LJPa0
8UUICU0MIeq1LpN4ePTnk/TCYeJ8UEbPIVDVcLPRaOyw3nxqSN9wmZky0Pc8anQAqu7iCi/W
RPt2MMWODgmgKWhg11DYw/M+QeHcHqj9sPm/Gqjdq+lw+5kkQ5yzed2fBsSkjr3zqX08Y/wJ
90rxtRdxLwTLWMcniGQ5z7OedWgnT9AJaOvgemog2yfpxT8psaf/nfR75Aw5CIW9NXhXwjpu
NuTnmDqYleYTmB4yRBlYw0b/WgE7+iPs/XaahreUje7RQAtYK8nSyZZI3kdhf9Jc/91soJ+R
ZAlsxW7jALOCeAkJQs2Pn5AU9pcgsJWShM2KuVZ/YD6oBvLjFBKZI8mKzJOBHhLlGsl3lupS
3V3U6rab/w6T7bMkAJ8zMPUwJyQBuypxqYhBbfQ6x/wZSR+nX2Rs6HvNedfwt9CReD0/Hwr2
n8fGud/cH+bEA1J4OW1dflyvMZMk81WjDvfQD7A0EPxQg/kotR1LQtAitgTHt5KAngr2q2f9
7hJmUrWg95tOQgtVw00kh69S6xrkcVfxHd8q5S3x7WgstIUkMJaIwfP5+XKB37uMvWlNgXdR
gJ5PUe8fCBrcQjbQe4zgdNBG/2yBBn87icQGA/0OnXa/ThGCa3jN3hTBwf6bJPaq9xjnH571
74Njr+F/7U3xm7wtiaNysiLodki+l7+JGtr7WWc3B7Y/Rl2+G5XviYf+TiWoz+9ASAJ9LFBp
y80xiLRVb0rhcfU1/LSq5JkU4NuCRnUpVfpPBtf4GHswG4n4Tj7riyn3hLcbwT5fD/a/h6Sw
J9h/gILenGLOCJ9zc3A9CPtvAlMAPSiGDr+U8kx/wPsOT7IwPUafy9yAqEBuGCbcaLQxmHB/
Hfg7nAimBgrGCRwxO2eUebHVdHalDQ3OpLA8IflBSB/l50+C42/icaF9fo4kE1oUy/m5L0UL
+AJt2J5Ay4B3/j4ZPXdhN699JOX5MYX2Ij5bj7kWxtv/LiCL09njh9eH1nCa0VomQ4hyRrD/
iP6YXqOZCb/DtPqhpM/8q+ZzX8n6e0J8Cbxa4pRi5kAly5Ctpjq5gb3zidQmPk5N4I6gN7mI
L9sKO4btEKTz5cC3sJAmx20yejYaBOsvqCG00K7vKmB7v5/PuSPl+SG0cEbazDvf5fGw8W+Q
fE8/hPpsGT2M2mrIrFuStFx/Tk2mXhxriyQ/fDgU7lonfTmV2hMI1AZiOaoHbedvhCQwJEl6
sVJxAtpwEGcP596PKNSbaXOeTfV6veQPLZ3Jl/3dQKj/Q4H7XE1CCaPVNlKNh1ZxrTFnoKJr
0hJ1DKoTT4qYOZ0kik3GTn6G2kpPQD7TJQk2Cn0L6+lMu4rqv8YhfK5OHGv9rKeOOmqQ8yVx
nO4MyNtRXbSGJCBG2LrKvMg69uznUNDaKfSP0qR4Mmj8GMMfTOkVN7EXCIf1NnL/cwH54Pjf
p6D3m163z9jdw4Et/EKKP0DJo9s8Z05GxwzYBqlBN+G1tpOAVpLsdpFAuqV+Min1UnPCaMv9
dfJMC0nCqKe7XC5rKvzLQxLQsXtgTgVsvInle0a9lhRbHXieJsJ2yQ9IeYQEMJwi7B+X9MQU
m8rQVPQeDxY5FiMb50r58yaGpXDAjybpXF/HDeB5qt931Il2ok6qfwmIWP0vlU4Td5TGkNEM
R5kDI2a70mQbwyV+V3tzS4rKl5P06EKRiUlMUcrDPdHCMFEJSKqBvdTS2uuABJokWTA1zEMx
k2QF59UHXG6rglFDhD2SeOCHKhSwpjIEMBSOcH81UpSX6+GeaBu0nu3ZbpoyXTJ5IczWF/N7
9CeFCUswjHwLzUFHdcyBVJ+A2rmHqtToc3UoNFlzQEHwd9BvMVlmi5LuSpLR9yU/9yR+/wNu
/73LbNWwMyQB2GaruD3L62fKq4FddfAcl/DzscCc7KQmAJLa5K+raj6BUesOwCk4PVQTHFMS
NjJwsrQvOP2QbcnOQLWZq0EEd0r5iWkdlZsDEpIAKntkDD4BR+MBPcCpMjp8uJa4UpI1KnYF
v10rycQmRw1worEVEUKLWWOVDBE6Gg/qAH7nJPkFoAUgD8VxiSeG2VWNZpIEMJGsx9thVTHX
koBWNDy0l3rdTHm8xM/lJIFaCZp1CK6mb+JRYyIACD5D0NrTwXkSHOeYYE1AK3aVV8eURxN7
Xmh+76jxfRUX0+bHqEAYCIScD5iZGuaUaPJXN2HQ+IDUzEI2O+80Z90pjT3sjcPEo9UGOppb
uI05Azez59/F58A08JO5/3U+H/wD2/yVTRiW8HPULMKZkqQb2irulZ3qwGSxCyiI26X6y6vp
b12SDE9easxP+AeQKh4TzzBicCf3gyAwu/Q28ZwGVTUHhC9AZxHO8GqZ8oDN/SFJX5thLNDE
KsgHiVmTSFWWNklpPXv7BexoevgJPwHChDFChenbiGvHGhHIM/CU+wSqglFTiYepfrljMBt4
kb0shG+8Q3FQ2d9P4T/L2P33p2gLw5I+IqFzGh41zwMNZZ37BCYc6gsYlXLcLqJ52OtpykJ7
UvS0cMCVmlZcSP1WwT+PvoULuB/2+92SeP2lzF4cwUs6pVgqPNcxQeaA8GU6sgHECmBGZ6mY
kHCiF6acY3o3EqfAyQcHI6YBf57EMiSV50+AP+oW+gV8fYPaYdSqxDaU0H0C2dAIttA+LzYS
BAFdQvsck3qu4/4naPejxx+oQINIOw7E8RVJ1kN0519tMD8kgVmGCFZJMnTkmLrAKNCfSryQ
y/oU4UeiWMzlP1/ys/+E6dzTVpuqRIhx7L3B+Y7qozskgT5J5gy0B2aCY2pCE69eYkhgIe1z
rLaEEPIjFHikKn+6QK8/nszEObf/awp07qeE2r8KO5Jy6hBhv/gkoiwAiVffouaH3hcJSLGG
4yLa+nDw/aOMHj1wdb1xYTv3obSd/V5HmQKSSmynug8CQJAOxupfZFvoraD3djQGYPYv43ZX
SAKtkqR+Rs+AmVw9VA8PSn5yQs07MMLt/oBdWo1PAabFSqqerTQ7+o1qMmy28dsCft9rnqud
5+jxQ5IsFtJs7qdmzRFJgmDsOWKu2W+eX6+hxxzhPv2U4H4W4THtpg4k2Jbgv0rwHwFkZP4V
txeZ/yXGVNtXQM0bNvfUF6yBOMN8B/qfda2FxZKkXN/I484gKewwz4QZh9u4b6Gpawnet/3U
RWIHg990W2cz2hTow8H7auXvw7yfvddyEtUw79Vr6qJNkmXn5/F6g2afbu82dXyQ7W6BeaYW
1s9+0yZbzDlL+EzbeP5yXvdVY3NPZ72rPLSYNtHH7wv5ezc/zzL1o1mBd5v/vliStTLwX143
x2oY9kVsK9oe5rBNnVlIPcAfVW8hbMEflcEqKgBaqfqnTuaDHOe+E4JzjgYvRMx2B39/0zTA
NnP8W6zQg6xcHD9DknTpb/K3ZeZFHuRzTZdk5GMHr6kVo/c4bARlxLzEg3xxsyU/jkL3KzHa
kZUw3mKG+a9vBfs7zXdd/fgbps4OSrJcml0tSddWmGbq9TD/04lsAG3BddrMvuPBvbIO2x4n
AzZ8utoYtSrxGUYTKFQxb6U05hODRtVZQPjF9KTN5njbGNvMMSuC89KOP8E07hNZeStSemic
s5nsOYNC0kGiQC9xwJDOkCGWRYbkTjJ1MMOQxgiJQWhH6/cOXvsYhbPNCKFVxY6YOtZe63o+
rx6vPfJ8PsebJNrwnSjpncR77uH2flMPHSmNzT6XBIQkQR2fYIhcyUf345qvmf9/lN9HTI8/
FJDmSEDOljxHzHH6XbNiL+P/mWbqV7E/5X/Y/7jHaH6trMvX6A/BvV+iJnyRuf8+vp/V5hkP
8llWm3eC9/FLPo+G5Z5CDeD1QOM8k9fsN51cu9GU283/0t+XmU5sD79rh2a1J/1vbeY6y4J3
/HZIApv48Lpc14O88G7+1moezrJUF1/66eZhf84bI530O+hcej8r7hc8TlXKnkBtFfOyVJ18
nSqaqm+qLs42KlSLqThdaWd28P1I0JNaM+CIaWizjNo53ThKW4OKtvVxxDT2WYYYwmft5/EL
eHxf8AzWnMAYPIbxDgVmS78xH4ZSzCZVWfeROIbNNa3Z0cd3hMk6GKK7yzxbS4oTsSXF/LNm
is740/uM8DyrURVCaHYVgr1Ws/nvZ/DeC6i24z9jiBMrYCOH4a8Dkphl2sNsPqf1gTwemCn2
3UrQXpbw/ObATLKm7onmXWmG7lYSsWp000xnFsrnMW7bkN9jpjM6KvmZv3V7mrnGdNOZtNNk
+TcnryYV6WEP1F7CKRRChXhdym92Db9y4tMnOp3UWFf+Ge9iFwMp9+4p89lsvW8v8kzlvp9S
x6EH/CP2DL3jrLdq12uxa2ld2QVN7yrz/PD/apvtLfM/lFpEdbiAc3VgDA7XgRLXDlP351LO
7U3zCeTMjxOVc67JPMR4g0kmEvU+vNVUoM6qBZ09+nt0CG8ps+7qsR4n6plyY7hPpfce77OO
9fzU86oVFFRsMRFfZ6D089XqOY/S/3ABVektY3yn9VR3k3GfXI2fNTeR53lkYHahvQL8P7fI
5C5I4phEOAk44NSCo2uuV4WTgCNbUNVwP82ApeIhwU4CjkwCXmOMkZeaVuxwEnBMYWDNCUwr
PltGrxDscBJwZAB91ALWOAk4CTiyCTgHNZzW4STgyCB0WvFKrwonAUc2kaMmgKChyVyt2OEk
4JhEvCBxItF2JwEnAUc2gXTfmBLb4lXhJODIJjRpCrLabPHqcBJwZA9Ia4ahQl1CzKMHnQQc
GYKuE4i04vPEc/87CTgyB+3xkf1G8zO6c9BJwJFB7JMkPZiTgJOAI2PmALQBJNnU3IwOJwFH
Bs2BVyROXgnn4CavFicBR/aA3AJIPuoJRpwEHBkG0mj7ytROAo6MAtmHB90n4CTgyC7Q8yP7
MBbugIOwx6vEScCRPWCYsCsql0gcOehwEnBkDLpc1hVjIAEPNXYScEwBYA1ErENwuVSeWwAE
oEuDn07zYhd/w5p9WCcQeQyx1Pl33NxwEnDUJ5BlaBNJYH6FJKBzDhBngIVo4WTUVZURjtzH
z2bex80NJwFHHQK9+caonC9jGyLEOQclWTEXZY4kS2jjt9WSv5y4w0nAUWf4hcQjBENjOLeF
5wKfZW/fYghiZlQuEo9IdBJw1DX+VeKcgwtot1fi8MPQ4oeisi0qvzbCr+YCFjtZ51XsJOCo
f6ySyucQgCi6otJJ9b8/xV/gcBJwNBAujMpdFWgBEPSPcRt2/zej8lhUfmI0CoeTgKMBAJX9
R1H5YFQWSvlDeedF5QZuwwl4HQuWPP+kxGsbOJwEHA2CDSSBSsKHu6Nym8SzEeEP+N2o3BmV
SyVe9PQD4klMnQQcDQMI9HSJnYPlCm4PzQcFen4MCT4YlRUSDzs6CTgJOOocOhKAwJ4ZUTmT
6nyp4+13BfY/HpUnaBYMevU6CTgaB0f4+S4pPUSIOIB3U3vYbo7H/qPs/UECnV6tTgKOxgF6
7Wejcq4Uzz4MYf9MVO6IykdJAjlJ0pg3GeHf5dXqJOCof2iPDwF+jHZ8c5HjMcnoD0kaG1Ku
A+iS5zu8ep0EHI2F3RLH+BcbIcCMwNNo96cd08rfYV6MeJU6CTgaCz3s4Yt59XXqcCGnH0wB
BA791M0BJwFH42EXVfjro3KfFHcOnma2m4xJcA1JAjMTB7xKnQQcjQU4AzGRCLkF1DkYjhR0
syBZCIKC1kviGFwblf8m8WSiB706nQQcjQUV9gO0698p6fECMBM0G9G3onKvxCsZXRuVm0kQ
GDnYHmgIDicBR50TwDRugwBOkDhysBAwUegUiWMBvmz2PxeVT0v+TEQnACcBR4NoACqwW6Ny
PCpLi5wDbQAThH4gcXjwZTQjvuYE4CTgaDyEggpb/gtRWSnpkYNNxn/wELf/2hznGYidBBwN
TgZIDILhvwuoDWyv4Fzv/Z0EHFPANEAPj/BhxAq0lKE5OJwEHFMQvjahk4Aj4yYBUoZ3OBk4
CTiyi+9KnCHoyqg87yaAk4AjWz4BCDyCgf6S/gEnACcBRwbNAeQMRCzA1VH5nlS2NJnDScAx
BYCViDAL8FaJ1yJ4yKvEScCRPY1AI/98JWEnAUdGobkFFnpVOAk4sgmNHLzIzQEnAUc2sU/i
BCMgAZ8P4CTgyCA0wchVEq9F4EuLOwk4MohnJM4y5HAScGQUuyRxDm5ys8BJwJE9vCLxHAJo
A+skySXoROAk4MgIhvmpi4k4ATgJODIECDzCh7HK8HKJcwsMe7U4CTiyA/T4CB9+QOKkosOu
CTgJOLJJBJhRiNTiusaAw0nAkSFzQLWBLpoETgJOAo6MaQEAwoexuGhbQA4OJwFHRjQBhA8j
twBSkLtz0EnAkUFgdGCzxEuMPegmgZOAI3vmAIKFTvPqcBJwZNccGJE4dNjhJODIKBEMROU+
iYcIHU4Cjozi11HZFpXro/KUpK9P6CMGTgKOKdLzqz/ACjXWI3xa4gQjuv/sqHwxKrdJPHrg
cBJwTAHoLMFVUTkjKi9GZSf3Yx7B9KjMlTjhyBUSJxz5qlebk4BjamkCEPhPRuWWqNwblU/z
t61RmRGV+SSBcyROS/68mwNOAo6ppQkAT0TlP0Xl9yQeIuylVgBcTvX/jah0G+3B4STgmELa
ABKIfCYq90TlfVG5Pyp9EocOv4vHYdHS3wbk4XAScEwh3EeV/xMkAfgE3ozKoqjMJCFs9mpy
EnBMXZMAn38VlV9F5QaaA7OjcnJU/oW+AYeTgGOKA0ODz0q8TDnSj8+LyglRWSNxFKFPJnIS
cGQAX5I4RuCsqBxnOYG/tXj1OAk4pi502G8TfQI3pxzjmoCTgCMDvgHgH6JybVQ6zb63JF6X
wBKGw0nAMUXxclQeoTag5gD8Bb0phOFwEnBMUa3gb1O0AYeTgCNDQJQg0o/fwu9tXiVOAo7s
QG3+b0blQ9QGprsvwEnAkT1sM74BRA52GL+Aw0nAMcV9AqFv4LATgJOAo76BnADnR2W3xJN/
AKQPxzoCp0s8xt/P/fPN7+3cP8Tz3i1xUFAPj1nGT0wrXstj9foIK+6KymKJIwqfjMqhqJwn
8YxDvV8zz0Uo8nZ/VU4CjurY75oTYJCljZ99FFYLdfJpQtHD/ESS0ZPNcXodPf4J7jtsiMH+
3m2u8Ra3p/O3JRIPPX7QicBJwFEdnGIEHAWrCHVK+hAfBHma+U1jAXDOUZ5/nL9NM79bgU9D
VwrRWCAU+QwnAScBR3WwyGzfzV67wwgj7Pm5xlxojcoCiRcbER67l9vLeXwPtYjwOkKToc1o
HJhsdCAq7+C1u3kcVjK6nL8Dr/irchJwVAevSTzbT0lgPL3tRK46BHPl9qjcGvgJHE4CjgnG
TrNdq9l+aXEDdp9u65yDffQTOJwEHFXALLNdq9l+uTL3qQlxNp9zwF+Xk4AjG8iltMcFkgw/
OpwEHFUQtCN1+Iwq9BhhWChxzgKHk4Bjgu3yQxN0rZBYmkp8rwQYauzzV+Yk4KgOESytkY2f
GwMRaLDSMfHRAScBR9VNArxzBOWMZYgQcQTzJT8sGE5GjDYgvLibqn2lmkCfebbp/rqcBBzV
wdumtz04xmtgsVFMHUam4VaSAEKEER7cQVv+QYnTj1UyAtHqmoCTgKP6WgAiBG8hAbw0hutg
gREEG3VS8LfzWhB+jO8v4++rSQSVevg1DLndX5mTgGPi/QHAYrMPgtZbwfmYH3ARBRxAxOFd
/A29OMb2L5F4laLBMT4nRgYwm/Cj4qMDTgKOCdcE0Isv4fcO2vXbKyAQxP+v5SeWH3vUHDNA
Ox7TgDG5aIdUNhLRxGey6xc4nAQcE4wh0/M3y+ipw6VMiV5Jpgc/awjE/n4xSeJl3q9Sc0UJ
oNtfl5OAY+LNgRx7cKG63j2Ga6zk9hvBbzpb8EZ+f0QqHya0jspBf2VOAo7q4GKzXencAcQY
XMBtLE3+DaNhIE8BnIIYdnw4Ks8FPXylcBJwEnBUwScgRhOAI6+rAp8Azocj8STa7RD4FSnH
wifwSZoGlQYLgUyO0FQ56K/MScBRHXPgsLG9WyokkIVU+dHTf978DnL4m6hcKnEcQm/Kfct5
Nm+LTgKOGqOjQgI5nd83pmgQIIX/I/EQ5FwZW8bhVn8lTgKO6psDCqjdOyo890KelxZktJXX
O5dksaECUyBnzAGHk4CjyubAAX7HWH4lobno3ZHsA6HCafn/4GSEM+/YOJ/zGH0CDicBR5U1
AaCSSTrqFNxcgDxaDLl0j5GgEHYMh2Cn1C7rkcNJIHOawIX8Dgff7ArOv57nPFfA3kf8wGqS
xP4xPmO7+IKmTgKOqkNnEUJ131vmOejlL+N2tyEVq2Gcwx78Xqk8NkCPn+0k4CTgqL458Fuj
CXRJvLR4KdiFSgoFAenvT45DS9kryWpGDicBR5UBge0rQzABePsRHASH3ce4rUlEOim417Md
dYzjmWAOTAt8DA4nAccEQ3vZZinP+QZh/JwkS5Fhiu8NFFa0GzvjT1c0GquW0irJyIA7Bp0E
HBOMtMi9cjP6bjQ99Z0U0A5JJg0pHpLxrRWwV5Kw4Q5/ZU4CjuqgNejlS/XOEPivSDLfv7eK
z7bAtMUl/qqcBBzVwYwxnpeTsU0KqgQtxrzwEGInAUeVcHgc5oSUIICxEoSeZ/0A2/xVOQk4
qo9KnG+5CTqm2HnWJ7DDX4+TgKM6mG+23xmVdXX0bGeIzxtwEnBUDdrb7ivhHyil0uvv1fAN
WGegr0XoJOCoAXalCH4pAc9VgRT0XOsMXOyvx0nAUX1zoK2AYFdi/+fG6Q+w5x7w1+Mk4Kge
0nrqT0mcJ2BWsH8fTQXVFOZJnEgEjkSM5R9kTw0SQYQggogQSqwhxLvNtbACkWYohuOv2/zW
xX19vO4V5jdPNOok4KgSTjHbSBR6a5nnwWt/lCr7kNEiukkYnSnHqjB3mu23uD0SlZP5Hduz
STahluJwEnBMMAbLEPY0D32z2d8W9OblHtuWItyFhN0jBp0EHFXC16LyAnv0yyiESgw/lzhI
5yJJRhHQyyPAaGdUPsHjX5M4LwEWHkW6MSxEokuOwbRYzeMeJUksj8rrEicbwe9zqE2cKXF2
o808XtctALb6q3IScEws1B+wSZKht3skP8WYzgt4qMA1HmcPv5/Xm0v/QOhrOFXiEGDNVYA1
ENMmFs3l9XRKM0yCq/kcT0h1Q5QdAf4fQ5kYF8P2lGMAAAAASUVORK5CYII=)
Рис. 43. Прохождение через две поверхности можно разделить на пять этапов. На этапе 2 единичная стрелка сжимается до 0,98, на этапе 4 стрел-ка длиной 0,98 сжимается еще раз до 0,98 (что дает примерно 0,96). На этапах 1, 3 и 5 происходит только поворот. В итоге квадрат стрелки длиной 0,96 будет равен примерно 0,92, что дает вероятность прохождения через две поверхности, равную 92 %. (Это соответствует 8 %-ному отражению, правильному лишь «дважды в сутки».) Когда толщина пластинки такова, что вероятность отражения равна 16 %, то в сумме с 92 % вероятности прохождения получается 108 %, т. е. мы учли 108 % света. В нашем анализе что-то неправильно!
Движение фотона от источника к детектору, находящемуся под стеклом, состоит из пяти этапов. Давайте сжимать и поворачивать единичную стрелку по мере продвижения.
Первые три этапа будут такими же, как в предыдущем примере: фотон летит из источника к стеклу (поворот, сжатия нет), фотон проходит сквозь переднюю поверхность (поворота нет, сжатие до 0,98); фотон проходит стекло (поворот, сжатия нет).
Четвертый этап – когда фотон проходит сквозь заднюю поверхность стекла – ничем не отличается от второго этапа в том, что касается поворотов и сжатия: поворота нет, а сжатие до 0,98 от 0,98, т. е. длина стрелки становится 0,96.
Наконец, пятый этап – фотон опять летит по воздуху в детектор – это значит, что происходит еще поворот, но без дальнейшего сжатия. В результате получаем стрелку длиной 0,96, указывающую в некотором направлении, заданном последовательными поворотами часовой стрелки.