Казалось бы, теперь только руку протяни — и теорема Ферма у тебя в кармане. Но гипотеза Таниямы тоже оказалась не лыком шита. Уже в 1990-х принстонский профессор Эндрю Уайлс втайне от всех сформулировал ее обоснование (не без помощи собственных студентов, которым предлагалось решать разные части доказательства в качестве контрольных) и представил на суд публики на конференции в Кембридже. Выступление прошло без сучка, без задоринки, все присутствующие были восхищены логикой рассуждений докладчика и ошеломлены самим фактом доказательства, журналисты ликовали: материал о двойном открытии должен был стать сенсацией…
А через пару месяцев один из сотрудников Принстонского университета обнаружил, что часть доказательств базируется на принципах Эйлера, которые никак не вписывались в метод самого Уайлса. Разочарованию Эндрю не было предела: он совершенно не хотел пополнить ряды фермистов, поэтому сразу же запретил публиковать свою работу и принялся избавляться от нестыковок. Благо оксфордский приятель подсказал ему, как это сделать, и после всех исправлений и перепроверок, в 1995 г., доказательство предположения Таниямы и Большой теоремы Ферма было напечатано более чем на 100 страницах крупного международного математического издания.
Об этом незаурядном событии научный руководитель Уайлса, Джон Коутс, отозвался так: «В мире математики полное доказательство Великой теоремы имеет такое же огромное значение, как в обычном мире — открытие ядерной энергии, покорение космоса и разгадка кода ДНК. То, что теорема Ферма все-таки была доказана, пусть и через три века после ее рождения, свидетельствует о неограниченных возможностях человеческого разума».
А доказал ли ее сам Ферма? Этого мы уже никогда не узнаем.
Как ни странно, теория вероятностей родилась задолго до того, как началась ее планомерная разработка. Продумывать варианты собственных действий и просчитывать верные шаги приходилось и во время охоты на диких животных, и в ходе сражений с врагами, и в процессе игры, например, в кости. Впервые люди столкнулась с этим за тысячу лет до нашей эры. Бросая кубики с точками, они замечали, что одни комбинации выпадают чаще, а другие реже. Ведь если тройка складывается всего из одного сочетания (двойка и единица — для двух костей), то пятерка может сформироваться из тройки и двух единиц либо четверки и единицы. А это значит, что шансов заработать пять очков больше, чем выбросить три очка.
Чуть позже, с развитием наблюдений за небесными явлениями, звездочеты по наитию стали прикидывать, насколько велико расхождение с реальностью в определении времени и места затмения, какова вероятность того, что это затмение повлияет на ход военных действий (и каким образом), какой может быть погрешность в предсказании расположения звезд и планет. Когда же наступила эра дальних путешествий, назрела необходимость взвешивать возможности успеха и неудачи, чтобы застраховать свои корабли, товары и здоровье на случай шторма или разбойных нападений.