Примени математику (Гашков, Сергеев) - страница 95



Рис. 79


16.15. Расположим сетку так же, как это было сделано при решении задачи 16.14, и обозначим на луче узлы сетки G, H, К, а также узлы L, М, N и Р, Q, R в соответствии на рис. 80. Учитывая, что угол DF5 прямой, получаем равенства



Рис. 80


Теперь остается заметить справедливость соотношений


и посчитать тангенсы углов


После этого требуемые равенства получаются, если вместо указанных углов подставить соответствующие арктангенсы.

16.16. Пусть вершины треугольника ABC лежат в узлах сетки, а угол ABC не равен 90°. Так как в этой ситуации невозможно, чтобы одна из сторон А В или ВС этого угла имела горизонтальное направление, а другая вертикальное, то без ограничения общности можно считать, скажем, вертикальное направление не занятым ни одной из указанных сторон. Поэтому тангенсы углов, образованных лучами ВА и ВС с некоторым горизонтальным лучом BD (рис. 81), окажутся определенными (ведь ни один из углов ABD и CBD не является прямым) и к тому же рациональными числами, так как и вертикальные, и горизонтальные проекции отрезков АВ и ВС имеют целую длину. Обозначив α = tg ∠ ABD, β = tg ∠ CBD, получаем, что тангенс угла ∠ ABC = ∠ ABD - ∠ CBD есть также рациональное число

(здесь знаменатель 1 + αβ мог бы оказаться равным нулю только в случае прямого угла ABC). Таким образом, доказано, что угол ABC либо прямой, либо имеет рациональный тангенс. Аналогичные утверждения будут верны и для двух других углов треугольника ABC.


Рис. 81


16.17. Пусть прямая проходит через узлы В и С, а повернуть ее нужно вокруг узла В на угол с данным рациональным тангенсом α. Один из способов это сделать состоит в том, чтобы определить по узлам В и С тангенс β угла наклона прямой ВС к горизонтальному (или вертикальному) лучу BD, а затем найти тангенс γ угла наклона искомой прямой к тому же лучу по формуле


Поскольку полученный тангенс будет также рациональным числом (в случае 1 - αβ = 0 искомая прямая должна быть перпендикулярной к прямой BD), то некоторый узел В можно построить по значению у так, чтобы выполнялось равенство tg ∠ ABD = γ. Например, на рис. 81 показано, что получится, если прямую ВС повернуть на угол, тангенс которого равен α = 8: так как

, то
(знак минус у последнего тангенса означает, что угол ABD тупой).

16.18. Если бы все вершины равностороннего треугольника одновременно лежали в узлах сетки, то, согласно утверждению задачи 16.16, углы при вершинах этого треугольника имели бы рациональные тангенсы; Однако хорошо известно, что это не так:

- иррациональное число.

16.19. Все вершины правильного шестиугольника одновременно не могут лежать в узлах сетки, поскольку три его вершины, взятые через одну, являются вершинами правильного треугольника и уже эти три вершины не могут оказаться в узлах (см. задачу 16.18), а тем более все шесть вершин.