Время переменных. Математический анализ в безумном мире (Орлин) - страница 90

Наша пирамида становится конусом. Наш куб становится цилиндром. И, таким образом, конус составляет 1/3 цилиндра, который содержит его.



Довольно круто, правда? Во II в. Плутарх писал:

…во всей геометрии не найти более трудных и сложных задач, объясненных посредством более простых и прозрачных основных положений… Собственными силами вряд ли кто найдет предлагаемое Архимедом доказательство, но стоит углубиться в него – и появляется уверенность, что ты и сам мог бы его открыть: таким легким и быстрым путем ведет к цели Архимед.

Тем не менее эти экскурсы в геометрию не описывают «военного гения». Читатель должен поинтересоваться: откуда взялись военные машины, сразившие римлян?

«Сам Архимед считал сооружение машин занятием, не заслуживающим ни трудов, ни внимания, – отмечал Плутарх, – большинство их появилось на свет как бы попутно, в виде забав геометрии». Как бы странно это ни звучало, такое часто происходит в истории математики. Бесцельная игра фантазии каким-то образом ведет к технологическому прорыву.

Хотя римляне не особенно оценили чисто математические достижения, они явно отдали должное смертельным когтям, крушившим их суда. Распознав в себе грабителей из древнего приквела к «Один дома», генерал Марцелл и его армия отступили.



В один прекрасный день несколько месяцев спустя Архимед рисовал фигуры на песке. Мне нравится представлять, что он вспоминал свое любимое доказательство – теорему, которую он велел друзьям и родным написать на его могиле.

Она начинается со сферы.



Мы заключаем ее в цилиндр, идеально подогнанный, как упаковка – к теннисному мячу.



Вопрос Архимеда заключался в следующем: какую часть цилиндра заполняет сфера?

(В действительности вопрос был более элементарным: насколько велика сфера? Но любое описание размера требует ссылки на что-то, что нам уже известно: к примеру, мой рост – это приблизительно 5 2/3[55] тех давно существующих единиц, которые называются футами. И тут-то в дело как раз и вступает цилиндр.)

Для начала разрежем всю фигуру пополам. Вместо теннисного мяча в контейнере мы получим полусферу в хоккейной шайбе.



Теперь, вместо того чтобы беспокоиться об объеме внутри полусферы, мы можем сосредоточиться на объеме вне ее. В духе «бесчисленных бед» мы можем считать эту область пачкой обручей или шайб, каждая из которых является окружностью с круглой дырой в середине.



Внизу этой стопки находится чрезвычайно тонкая шайба. Ее дыра занимает весь круг, оставляя только напоминающее струну кольцо. Наверху тем временем пребывает очень толстая шайба. Это почти целый круг с отверстием размером с булавочный прокол. Между ними находится целое семейство шайб.