Каковы площади этих фигур? После интерлюдии с хитрой алгеброй мы приходим к выводу, что площадь каждой равна πh>2, где h – расстояние от поверхности.
Это означает, что, применяя Принцип бесчисленных бед, каждую из них можно заменить кругом радиусом h.
Видите! У нас получился не странный кратер в форме полусферы, а простой конус, перевернутый острием вниз.
Как мы уже установили, конус заполняет 1/3 цилиндра. Таким образом, пустое пространство – то есть то, что было полусферой – заполняет 2/3.
Вывод: сфера заполняет 2/3 цилиндра.
Над этими чертежами на сицилийском песке Архимед мечтал об интегралах за тысячелетие до их изобретения. Площади и объемы, бесконечное количество ломтиков, перестановки, которые решают проблему непрерывности и кривизны, – все это химические ингредиенты, «первичный бульон», из которого позднее развились интегралы. Почему же тогда миру так долго пришлось ждать рождения математического анализа?
В тот день римляне взяли город. В течение нескольких часов Сиракузы были сожжены, а солдаты впали в состояние неистовства, грабя и убивая. «Множество жестокостей было совершено сгоряча и из жажды наживы», – писал историк Ливий. Тем не менее римский военачальник Марцелл настаивал на том, чтобы сохранить жизнь великому геометру, «находя в том, чтобы спасти Архимеда, столько же славы, сколько и в разрушении Сиракуз» (по словам другого историка).
Архимед даже не заметил падения города. Что значит какой-то грабеж и разрушения по сравнению с всепоглощающей красотой фигуры на песке?
Историки расходятся во мнении по поводу того, что сказал Архимед, когда к нему приблизился римский солдат. Возможно, он взмолился: «Пожалуйста, не стирайте мои круги!» Может быть, он разбушевался: «Не трогай моих чертежей, парень!» Весьма вероятно, что он прикрыл рисунки ладонями, как будто идеи значили намного больше, чем его собственная жизнь: «Лучше ударьте меня по голове, только не стирайте линии!» В любом случае все источники сходятся в одном: солдат убил Архимеда. Кровь заполнила прочерченные в песке дорожки, оставленные его пальцами. Марцелл настоял на подобающем погребении и осыпал родственников ученого подарками и милостями. Но виновник «бесчисленных бед» был мертв.
Сегодня величайшим наследием Архимеда считаются не катапульты и когти, а геометрия. Его понятные аргументы, его восприятие бесконечности, то, как близко он подошел к математическому анализу. Мог ли один легкий дополнительный толчок привести к нему? Мог ли матанализ возникнуть на Земле на тысячу лет раньше, чем это произошло в реальности?