Как же называется эта книга? (Смаллиан) - страница 120

Вот если бы Эпименид был единственным критянином, то парадокс действительно возник бы. В этом случае единственный обитатель острова рыцарей и лжецов утверждал бы, что все жители острова лжецы (то есть в конечном счете утверждал бы, что сам он лжец, а это невозможно).

В улучшенном варианте парадокса лжеца говорится о человеке, высказывающем утверждение «я лгу». Лжет он или нет?

Следующий вариант улучшенного варианта мы будем называть в дальнейшем парадоксом лжеца. Рассмотрим утверждение:


Это утверждение ложно.


Истинно оно или ложно? Если оно ложно, то оно истинно. Если оно истинно, то оно ложно. Решение парадокса лжеца мы обсудим чуть позже.

254. Парадокс Журдэна

Следующий вариант парадокса лжеца был впервые предложен в 1913 г. английским математиком П. Э. Б. Журдэном. Иногда его называют «парадокс Журдэна с карточкой». Представьте себе карточку, на одной стороне которой написано:

1) Утверждение на другой стороне этой карточки истинно.

Перевернув карточку на другую сторону, вы увидите надпись:

2) Утверждение на другой стороне этой карточки ложно.

Парадокс заключается в следующем. Если первое утверждение истинно, то второе утверждение истинно (так как в первом утверждении говорится, что второе утверждение истинно). Следовательно, первое утверждение ложно (так как во втором утверждении говорится, что первое утверждение ложно). Если же первое утверждение ложно, то второе утверждение ложно. Следовательно, первое утверждение не ложно, а истинно. Таким образом, первое утверждение истинно в том и только в том случае, если оно ложно, а это невозможно.

255. Еще один вариант

В другом варианте парадокса лжецов на карточке написаны следующие три утверждения:

1) Это утверждение содержит пять слов.

2) Это утверждение содержит восемь слов.

3) Ровно одно утверждение на этой карточке истинно.

Утверждение (1) заведомо истинно, а утверждение (2) заведомо ложно. Проблема возникает в связи с утверждением (3). Если утверждение (3) истинно, то на карточке – два истинных утверждения, а именно утверждение (3) и утверждение (1), вопреки тому, о чем говорится в утверждении (3). Следовательно, утверждение (3) должно быть ложно. С другой стороны, если утверждение (3) ложно, то утверждение (1) – единственное истинное утверждение на карточке, а это означает, что утверждение (3) должно быть истинным! Итак, утверждение (3) истинно в том и только в том случае, если оно ложно.

Примечание. Где ошибка в рассуждениях во всех этих парадоксах? Вопрос этот весьма тонкий и довольно спорный. Некоторые (главным образом философы, а не математики) считают совершенно недопустимым любое утверждение, содержащее ссылку на себя. Подсчитав число входящих в него слов, вы убедитесь, что оно истинно. Утверждение «это утверждение содержит шесть слов» ложно, тем не менее смысл его ясен, и значение истинности устанавливается без труда: в нем говорится, что число входящих в него слов равно шести, тогда как их только пять. Никаких сомнений относительно смысла утверждений в обоих рассмотренных нами примерах не возникает.