— А теперь последнее задание, которое приблизит нас к волшебному квадрату. Тут понадобятся нам все исследовательские умения. Вы готовы, коллеги, принять задание?..
= Да!
— Прошу полного внимания.
Объясняю задание медленно и разборчиво, акцентирую его основные условия.
— Вот схема из шести квадратов, и вот шесть чисел. Числа эти надо расположить в квадратах так, чтобы сумма каждых двух чисел по вертикали была одинаковая, а сумма трех чисел по горизонтали была в два раза больше суммы трех чисел второй горизонтали. Есть у вас, коллеги, вопросы ко мне?.. Нет?.. Тогда приступим к делу.
Мое объяснение сопровождается дополнительными знаками на схеме, которая принимает на доске следующую форму:
3
4 9
5 7 8
Время на задание ограничено — три с половиной минуты. В классе воцаряется полная тишина, «шуршит» только напряженная мысль детей.
Медленно передвигаюсь по рядам.
Шепчу Диме: «Как приятно смотреть на тебя, погруженного в мысли!»
Шепчу Кате: «Ты сегодня удивляешь меня. Спасибо».
И говорю полушепотом всем: «Как прекрасно, когда в лаборатории царствует мысль. Спасибо, ребята, мне так хорошо с вами!»
Вот и первые зовы.
Это Гога:
= Если числа расположить так, то суммы будут 12 и 24.
Схема у него заполнена так:
3 4 5 12
9 8 7 24
12 12 12
Выражаю радость.
— Спасибо… Прекрасно! — жму руку Гоге.
Это Таня.
= Вот что у меня получается, — и показывает свою схему, — но вы сказали, что сумма одних горизонтальных чисел должна быть в два раза больше суммы других горизонтальных чисел. А у меня суммы получились равными.
8 3 7 18
4 9 5 18
12 12 12
— Коллеги, я и не предполагал, что задачу можно решить так! Может быть, я ошибся? Проверь, пожалуйста, и попытайся переставить числа.
Это Илья. Показывает схему и морщится.
7 9 4 20
5 3 8 16
12 12 12
— Думаю, если переставить числа, все будет в порядке.
Наконец, с задачей справились все, и схема на доске приняла вид:
3 4 5 12
9 8 7 24
12 12 12
— Таким образом, мы отточили наши исследовательские способности. Как решать эти задачи, я, конечно, знал, но открыть тайну волшебного квадрата я не смог. Предлагаю вам этот удивительный квадрат Альбрехта Дюрера для коллективного исследования.
Открываю центральную часть доски.
— Посмотрите, как он красив… Попытайтесь сперва раскрыть, в чем его волшебство.
Дети внимательно всматриваются в квадрат на доске.
Майя:
= Сумма чисел по горизонтали одинакова — по 34.
— Только по горизонтали?
Владик:
= По вертикали сумма чисел тоже 34.
— Проверьте, пожалуйста.
Дети убеждаются, что это так.
— Но только по вертикали и горизонтали?
Мика:
= Ой, ой, по диагонали тоже: