О Бесконечном (Гильберт) - страница 7

Уже Фреге и Дедекинд, сделавшие очень многое для обоснования математики, оба, независимо друг от друга, применили актуальную бесконечность для того, чтобы обосновать арифметику независимо от всякого наглядного представления и опыта, на чистой логике и развивать её дедуктивным путём только посредством логики. Их стремление состояло в том, чтобы конечное число не брать из наглядного представления, а вывести чисто логически, существенно используя при этом понятие бесконечных множеств. Кантор же разработал понятие бесконечного систематически. Рассмотрим оба упомянутых примера бесконечного:

1) 1, 2, 3, 4, ...

2) Точки отрезка [0, 1] или, что то же, совокупность действительных чисел, заключённую между 0 и 1 [включая их].

Во-первых, их надо исследовать с точки зрения многочисленности; при этом мы приходим к поразительным фактам, которые теперь хорошо известны каждому математику. Именно, если рассматривать множество всех рациональных чисел, т. е. все дроби 1/2, 1/3, 2/3, 1/4, ... , 3/7, ... , то оказывается, что это множество, взятое только с точки зрения многочисленности, не больше множества целых чисел; мы говорим, что рациональные числа могут быть обычным способом пересчитаны, или что их множество счётно.

То же справедливо и относительно множества всех чисел, выражающихся с помощью радикалов и, даже более того, — для множества всех алгебраических чисел. Аналогично обстоит дело и с нашим вторым примером: неожиданным образом оказывается, что множество точек квадрата или куба, взятое только с точки зрения многочисленности, не больше множества точек отрезка [0, 1]; даже для множества всех непрерывных функций справедливо ещё такое же утверждение. Кто узнаёт это впервые, может подумать, что с точки зрения многочисленности существует вообще одна только бесконечность. Но это неверно: множества наших двух примеров, — 1-го и 2-го — как говорят, не «равномощны»; напротив того, множество 2-го примера не может быть пересчитано, — оно больше множества 1-го примера. Здесь наступает характерная перемена в образовании идей Кантора. Точки отрезка нельзя пересчитать обычным способом с помощью чисел 1, 2, 3, ... Но, допуская существование актуальной бесконечности, мы отнюдь не ограничиваем себя этим обычным способом счёта, и ничто нас не принуждает прекратить счёт. Когда мы пересчитали 1, 2, 3, ..., то мы можем пересчитанные предметы рассматривать как некое в этом определённом порядке законченное бесконечное множество. Обозначим, как это делает Кантор, этот порядок по его типу через ω; тогда счёт естественно продолжается с помощью ω + 1 ,ω + 2 ,... до ω + ω или ω*2, а затем он продолжается дальше с помощью ω*2 + 1,  ω*2 + 2, ω*2 + 3, ..., ω*2 + ω = ω*3 и далее с помощью ω*2, ω*3, ω*4, ..., ω*ω = ω