S>1/d>2>1 = S>2/d>2>2
Возникают два вопроса. Откуда Евклид знал, что он должен был доказать? Другими словами, почему он взял соотношение именно между площадями и диаметрами? Он неявно использовал метод доведения до предела, который мы рассмотрели выше? Мы не знаем. С другой стороны, для доказательства (1) Евклид предположил существование площади S < S>2, при которой
S>1/S = d>2>1/d>2>2 .
Это означает, что при данных площадях S>1, d>2>1, d>2>2 он предположил существование «площади S, являющейся четвертой пропорциональной». Однако Евклид доказал ее существование только для трех прямых, а не для трех площадей.
ОПРЕДЕЛЕНИЕ ЧИСЛА π
Во второй половине XIX века англичанин Генри Ринд приобрел папирус, датированный примерно 1650 годом до н.э. и названный впоследствии его именем. Этот папирус, в свою очередь, был копией еще более древнего папируса, 1800 года до н.э., и содержал задачи по определению объема цилиндрических силосов для хранения зерна. Его автор, писец Ахмес, хотел узнать площадь круга, лежащего в основании цилиндра, что привело его к определению числа π. В древности его обычно считали равным 3. Однако Ахмес предложил более точное значение π, приблизительно сведя окружность к восьмиугольнику
Дан квадрат, состоящий из девяти частей по сторонам. Разделим его на девять квадратов так, что сторона каждого из них будет равна трем этим частям. Уберем четыре прямоугольных треугольника с вершинами, образующимися при проведении диагонали. Площадь получившегося восьмиугольника будет равна
9>² - 4 x (3 x 3)/2 = 81 -18 = 63
частей в квадрате. Построим площадь круга с диаметром, равным девяти частям и 64 частям в квадрате [то есть 64 — квадрат числа]. Значение к при этом приближении будет равно
π = 64/(9/2)² = (16/9)² = 3.16...
Такое значение π, действительное для всех фигур (то есть при любом значении диаметра d), получается при наложении двух плоских фигур — круга и восьмиугольника. Более тысячи лет спустя Архимед, мудрец из Сиракуз, в своем кратком сочинении «Об измерении круга» изложил два новых результата.
Предложение 1. Отношение L/d, возникающее между длиной окружности L и ее диаметром d, будет равно величине, находящейся между 223/71 и 22/7.
Предложение 2. Площадь круга S равна площади прямоугольного треугольника T, катеты которого равны радиусу r круга и длине L его окружности.
В доказательстве предложения 2 Архимед использовал метод исчерпывания, как и Евклид в предложении 2 книги XII. Он предположил, что
(1) S > T, и (2) S < T,
а затем показал: оба варианта ведут к противоречию. Следовательно, S должно непременно равняться Т. Но каким образом он догадался о существовании этого соотношения? Об этом мы никогда не узнаем.