Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) (Басса) - страница 33

Много лет Ричардсон собирал данные о протяженности границ между странами, но результаты его исследований были опубликованы лишь в 1961 г., спустя восемь лет после его смерти. В своей статье он отметил, что разные страны приводят разную длину одних и тех же границ с другими странами (для этого было достаточно обратиться к соответствующим справочникам). Например, в испанских справочниках длина границы между Испанией и Португалией равна 987 км, в португальских — 1214 км. Аналогично в голландских источниках указана длина границы с Бельгией в 380 км, в бельгийских источниках приведена цифра в 449 км.


НАСКОЛЬКО ВЕЛИКА СПИРАЛЬ?

Спирали представляют собой класс объектов, которые ставят под сомнение традиционный способ измерения длины. Спиралями интересовались математики всех времен. Так, Архимед написал трактат о спиралях и открыл особый тип спиралей, который был назван в его честь. Архимедова спираль подобна поперечному сечению свернутого ковра, то есть расстояние между ее витками всегда остается постоянным. Спираль Архимеда описывается следующей формулой: r, где r — координата точки спирали, которая зависит от угла φ поворота центральной оси против часовой стрелки (в радианах), a q — константа, которая при умножении на 2π дает расстояние между последовательными витками спирали. Еще одним видом спирали является логарифмическая, представленная на рисунке ниже:



Для этой спирали произведение константы q на угол φ дает не r, а логарифм r. Швейцарский математик Якоб Бернулли был настолько впечатлен подобием всей спирали и любой ее части (то есть самоподобием), что повелел написать на своем надгробии такие слова: Eadem Mutata Resurgo, что в переводе означает «измененная, я вновь воскресаю». Точнее говоря, свойство, которым восхищался Бернулли, заключается в том, что сжатие или растяжение этой спирали равносильно ее повороту на определенный угол.



Рассмотрим любопытный пример двух многоугольных спиралей, подобных тем, что показаны на рисунке выше. Справа изображена бесконечная спираль. В ней каждая сторона относится к предыдущей как 1/q. Сумма длин всех сторон равна сумме ряда 1 + 1/q + 1/q>2 + 1/q>3 +…, равной q/(q — 1). Следовательно, эта спираль имеет конечную длину. Например, если мы выберем q = 1,05, сумма (то есть длина всех сторон) будет равняться 21.

Спираль слева построена по иному, но тоже очень простому правилу: большая сторона спирали равна 1, следующая — 1/2, следующая — 1/3, затем 1/4 и так далее. Известно, что этот ряд не сходится, то есть спираль на рисунке слева имеет бесконечную длину, а спираль на рисунке справа — конечную длину. Можно ли было предположить что-то подобное?