Совершенная строгость. Григорий Перельман: гений и задача тысячелетия (Гессен) - страница 88

Пятый постулат Евклида — единственный, для которого требуется воображение: если две прямые не являются параллельными третьей, они когда-нибудь пересекутся. Верно и обратное: две прямые, параллельные третьей, никогда не пересекаются, какой бы длины они ни были. Этот постулат интерпретируют и так: в плоскости через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной. Это не так уж очевидно, да и проверить это нельзя. А раз это нельзя проверить, то нужно доказать. Столетиями математики трудились над этой задачей, но решить ее не сумели.

В XVIII веке были предприняты две попытки доказать пятый постулат Евклида от противного. Идея заключалась в выдвижении противоположного пятому постулату утверждения и доведении его до абсурда. Однако прямые линии вели себя не так, как от них ждали, и в результате математики получили воображаемую внутренне непротиворечивую картину, которая при этом противоречила пятому постулату. Оба математика сочли это нелепым и оставили свои попытки.

Около века спустя трое математиков (россиянин Николай Иванович Лобачевский, венгр Янош Бойяи и немец Иоганн Карл Фридрих Гаусс) пришли к выводу о возможности существования иной, неевклидовой геометрии, в которой соблюдаются четыре первых постулата, а пятый — нет. Но что значит — возможность существования? Она существует до тех пор, пока математики не найдут в ней просчеты или внутренние противоречия. Но можем ли мы воочию увидеть ее, как видим линию, сегмент или окружность? Невооруженным взглядом мы, как бы ни старались, увидим как раз евклидову геометрию. Так как мы поймем, что правильно?

Великий американский математик Рихард Курант (его именем назван математический институт в Нью-Йоркском университете) и его соавтор Герберт Роббинс (профессор

Рутгерского университета) считали, что обе геометрии оказываются практически одинаково пригодными для употребления и для наших целей вполне годится евклидова модель: "Так как работать с евклидовой геометрией гораздо легче, чем с гиперболической, то мы и пользуемся ею, покуда рассматриваются небольшие (порядка нескольких миллионов миль!) расстояния. Однако нет оснований ожидать, что она наверное оказалась бы подходящей при описании физического мира в целом, во всех его обширных пространствах"[4].

Но как быть, если нам приходится описывать частицу Вселенной — скажем, Землю или яблоко? (Помните: с точки зрения геометра Земля и яблоко, в сущности, одно и то же.) Представим поверхность Земли или, например, яблока плоскостью. Нарисуем на яблоке треугольник. Если применить к поверхности яблока евклидову геометрию, то сумма углов этого треугольника должна будет равняться 180°. Но поскольку поверхность яблока искривлена, то сумма углов получается большей. Это может означать, что пятый постулат Евклида для этой плоскости не действует. Мы увидим, как на искривленной поверхности две прямые, будучи продолжением сегмента, соединяющего две точки кратчайшим путем, пересекутся. Все прямые, проведенные на поверхности яблока (или на поверхности Земли), — это большие окружности с центрами в центре сферы.