Совершенная строгость. Григорий Перельман: гений и задача тысячелетия (Гессен) - страница 90

Тополога можно сравнить с жуком, ползущим по яблоку, или же с Евклидом, шагающим по земле. Никому из них нет дела до того, что сумма углов описываемого ими треугольника больше 180° или что прямая линия, вдоль которой они идут, не будет длиться бесконечно, а где-нибудь замкнется, образуя большую окружность. Искривленность поверхности, на которой они находятся, — это функция третьего измерения, которое они не воспринимают.

Современные люди, знающие, что Земля — это шар и что его поверхность обладает [положительной] кривизной, живут в трехмерном мире. Но есть и четвертое измерение — время. Однако, поскольку мы не умеем перемещаться во времени, мы не в состоянии обнаружить трехмерную природу собственного существования так, как мы можем следить за животными, живущими в двух измерениях. Мы ограничиваемся исследованием пространства вокруг нас и строим догадки, как все это выглядит из точки, о которой мы можем только догадываться — но попасть в нее или даже вообразить ее мы не можем. В этом заключается суть гипотезы Пуанкаре: последний универсалист предположил, что Вселенная имеет форму трехмерной сферы.

Во время моей работы над книгой один молодой математик давал мне уроки топологии, терпеливо наблюдая, как я мучительно пыталась закрутить ум в трубочку, чтобы постичь основы этой науки. Он презрительно морщился всякий раз, когда речь шла о том, что гипотеза Пуанкаре описывает форму Вселенной. Если говорить точнее, доказательство гипотезы Пуанкаре может оказать неоценимую помощь науке в изучении формы и свойств Вселенной. Но не это занимало Григория Перельмана. Перед ним стояла четко сформулированная еще сто лет назад задача, которую до сих пор никто не решил.

Так же, как моего наставника и многих других математиков, с которыми мне довелось пообщаться, Перельмана нисколько не заботила физическая форма Вселенной или опыт населяющих ее людей. Математика предоставила ему возможность жить среди абстракций в его собственном воображении, и именно там надлежало решить задачу.

В 1904 году Анри Пуанкаре напечатал статью о трехмерных многообразиях. Многообразие — это объект или пространство (существующее в воображении математика, но не обязательно в реальности), которые могут быть разделены на множество отдельных окрестностей. Каждая отдельно взятая окрестность имеет обычную евклидову геометрию, однако все вместе окрестности представляют собой нечто гораздо более сложное.

Лучший пример многообразия — поверхность нашей планеты, запечатленная на нескольких картах, каждая из которых изображает небольшой фрагмент поверхности. Вообразите, например, карту Манхэттена: это несомненно евклидово пространство. Если карты сложить в атлас, то параллельные прямые на них по-прежнему не будут пересекаться, а сумма углов построенных треугольников не будет превышать 180°. Но если бы мы захотели построить из набора этих карт модель Земли, то сначала получили бы многогранный объект, напоминающий дискотечный зеркальный шар. Потом мы сгладили бы углы и в результате получили глобус, отражающий сложную кривизну планеты. Если мы продолжим на глобусе линии Первой и Второй авеню, то они пересекутся — в отличие от евклидова пространства. Эти понятия — карты, атласы, многообразия — являются основой топологии.