Апология математики, или О математике как части духовной культуры (Успенский) - страница 43

Поэтому в течение долгого времени предпринимались попытки доказать содержащееся в аксиоме о параллельных утверждение, исходя из остальных аксиом, и тем самым как бы понизить статус этого утверждения, переведя его из аксиом в теоремы. Однако все эти попытки проваливались. Как правило, в каждое такое доказательство незаметно проскальзывало какое-нибудь геометрическое утверждение, не вызывающее, казалось бы, никаких сомнений, но на самом деле равносильное аксиоме о параллельных. Например, в “доказательстве” знаменитого французского математика XVIII - XIX веков Лежандра использовалось такое вроде бы невинное предложение: через любую точку внутри угла можно провести прямую, пересекающую обе стороны угла. Оказалось, что это предложение равносильно аксиоме о параллельных: оно не только опирается на эту аксиому, но и из него, в свою очередь, можно вывести самоё аксиому.

C большим трудом в сознание математиков проникало убеждение, что скорее всего сформулированное в аксиоме о параллельных утверждение вообще нельзя доказать. Осознать это было трудно ещё и потому, что вплоть до самого конца XIX века какой-либо чёткой системы аксиом геометрии вообще не существовало. Для аксиомы о параллельных решающим оказалось третье десятилетие XIX века. В этот период два великих геометра - российский математик Николай Иванович Лобачевский и венгерский математик Янош Бойаи (по-русски часто пишется “Больяй”) - совершенно независимо друг от друга построили геометрическую теорию, основанную на отрицании аксиомы о параллельных. Эту теорию называют геометрией Лобачевского - Бойаи или же просто геометрией Лобачевского (предполагаю, что в Венгрии она называется геометрия Бойаи ). Первые публикации по геометрии Лобачевского принадлежат её авторам: Лобачевскому - в 1829 году, Бойаи - в 1832 году. Их предшественником можно считать немецкого юриста Швейкарта, который пришёл к мысли о возможности такой геометрии в 1818 году, но ничего не публиковал. “Король математиков” великий Гаусс, о котором уже было сказано в главе 5 о квадратуре круга, пришёл к этой мысли ещё раньше, но тоже ничего не публиковал, справедливо полагая, что научная общественность ещё не готова воспринять столь смелые мысли. И действительно, геометрия Лобачевского не получила признания современников (за исключением Гаусса, который её оценил и даже выучил русский язык, чтобы читать сочинения Лобачевского в подлиннике). Гениальность Лобачевского и Бойаи была признана только после их смерти (случившейся соответственно в 1856 и 1860 годах). Когда же, наконец, возможность неевклидовой геометрии была осознана, это произвело переворот не только в математике, но и в философии.