Клиническая эхокардиография (Осипов, Шиллер) - страница 5

Соотношение между углом падения (отражения) и углом преломления описывается формулой: n>1/n>2 = sin θ>2/sin θ>1, где n — акустический импеданс, t — угол между направлением распространения звуковой волны и перпендикуляром к границе фаз.

Чем меньше угол падения (т. е. чем ближе направление распространение звуковой волны к перпендикуляру), тем больше доля отраженных звуковых волн. Доля отраженного ультразвука определяется тремя факторами: 1) разностью акустического импеданса сред — чем больше эта разность, тем больше отражение; 2) углом падения — чем ближе он к 90°, тем больше отражение; 3) соотношением размеров объекта и длины волны — размеры объекта должны быть не менее 1/4 длины волны. Для измерения меньших объектов требуется ультразвук с большей частотой (т. е. с меньшей длиной волны).

Пространственная разрешающая способность метода [resolution] определяет расстояние между двумя объектами, при котором их еще можно различить. Например, частота 2,0 МГц дает разрешающую способность в 1 мм. Однако, чем выше частота, тем меньше проникающая способность ультразвука (глубина проникновения): тем легче происходит его затухание [attenuation]. Таким образом, важно найти оптимальную частоту, которая дает максимальную разрешающую способность при достаточной проникающей способности. В табл. 1 приведены значения «половинного затухания» для разных сред, т. е. расстояния, на которых ультразвуковые волны с частотой 2,0 МГц теряют половину своей энергии.

Таблица 1. Значения половинного затухания ультразвуковых волн с частотой 2,0 МГц в различных средах

СредаРасстояние, см
Вода380
Кровь15
Мягкие ткани (кроме мышц)1—5
Мышечные ткани0,6—1
Кости0,7—0,2
Воздух0,08
Легкие0,05
Feigenbaum H: Echocardiography, 4th ed. Philadelphia, Lea & Febiger, 1986

Структуры, в которых происходит полное затухание ультразвуковых волн, иными словами, через которые ультразвук не может проникнуть, дают позади себя акустическую тень [shadowing]; при исследовании сердца такой эффект дают кальцинированные структуры и протезированные клапаны сердца.

Ультразвуковой датчик

Датчик [transducer] — это устройство, преобразующее один вид энергии в другой. В эхокардиографии мы имеем дело с преобразованием электрической энергии в механическую и наоборот. В датчике это преобразование осуществляется специальным кристаллом — пьезоэлектрическим элементом. Пьезоэлектрический элемент изменяет свои размеры под воздействием электрического тока и, напротив, порождает электрический ток под действием приложенного к нему давления, например, со стороны ультразвуковых волн. Таким образом, пьезоэлектрический кристалл может посылать и принимать ультразвуковые волны. В датчике пьезоэлектрический элемент находится между двумя электродами (плюс и минус). Проходящий через элемент электрический ток заставляет его то расширяться, то сжиматься и тем самым генерировать ультразвуковые волны. С другой стороны, приходящие ультразвуковые волны элемент преобразует в электрические импульсы, регистрируемые катодным осциллографом. Оптимальная длина пьезоэлектрического элемента равна 1/2 длины волны. В этом случае элемент колеблется с резонансной частотой. Колебания пьезоэлектрического элемента распространяются по всем направлениям, в том числе в направлении корпуса датчика. Чтобы исключить волны, отраженные от корпуса датчика, корпус выстилают поглощающим материалом. Генерированный ультразвуковым датчиком сигнал распространяется на некоторое расстояние, называемое ближней зоной [near field], в виде пучка параллельных волн, которые затем расходятся в так называемой дальней зоне [far field]. Наилучшим образом могут быть исследованы объекты, находящиеся в ближней зоне: здесь выше интенсивность излучения и больше вероятность того, что ультразвуковые лучи распространяются перпендикулярно границе раздела фаз. Интенсивность измеряется числом волн на единицу площади. Протяженность ближней зоны (l) зависит от радиуса датчика (r) и длины ультразвуковой волны (λ): l = r/λ. Поскольку λ = V/f, где V — скорость распространения ультразвука в тканях, а f — его частота, и V = 1540 м/с, получим: l = r