Клиническая эхокардиография (Осипов, Шиллер) - страница 6

×f/1540.

Отсюда ясно, что размер ближней зоны можно увеличить, увеличив частоту или радиус датчика. Сведения, приведенные в табл. 2, могут быть полезны при выборе наиболее подходящего датчика для визуализации сердца.


Таблица 2. Сравнительная характеристика различных ультразвуковых датчиков

Параметры датчикаПреимуществаНедостатки
Малый диаметрДатчик можно использовать при узких межреберьях, его можно сильно отклонять, дает тонкий пучок в ближней зонеКороткая ближняя зона, большая дивергенция в дальней зоне
Большой диаметрДлинная ближняя зона, относительно малая дивергенция в дальней зонеНизкое латеральное разрешение из-за широкого пучка
Высокая частотаВысокая разрешающая способность, длинная ближняя зонаНизкая проникающая способность
Низкая частотаВысокая проникающая способностьНизкая разрешающая способность, короткая ближняя зона

Применив конвергирующие и рассеивающие линзы, можно удлинить ближнюю зону и уменьшить расхождение ультразвуковых лучей в дальней зоне. Конвергирующие линзы фокусируют параллельные ультразвуковые волны и используются в датчиках для сжатия пучка. Они формируют узкий пучок высокой интенсивности на коротком участке, за пределами которого лучи расходятся, но не в такой степени, как это было бы без использования конвергирующих линз. В современных датчиках фокусировка ультразвуковых лучей осуществляется не оптическими линзами, а электронными средствами.

В общем виде процесс работы эхокардиографа может быть представлен следующим образом. В некоторый момент времени датчик посылает короткий ультразвуковой импульс. Импульс линейно распространяется в гомогенной среде до тех пор, пока не дойдет до границы раздела фаз, где происходит отражение или преломление ультразвуковых лучей. Через время, равное Δt, отраженный звук (эхо) вернется к датчику, который теперь работает как приемник. Зная скорость распространения звуковой волны (1540 м/с) и время, за которое звук прошел расстояние до границы фаз и обратно (Δt), можно вычислить расстояние между датчиком и этой границей (D): D = 1540×Δt/2.

Это соотношение между временем и расстоянием и лежит в основе метода ультразвуковой визуализации сердца. Обычно в эхокардиографии используют ультразвуковые импульсы длительностью около 1 мс. Пьезоэлектрический элемент работает в режиме генерации менее 1% времени, а все остальное время — в режиме приема. При этом пациент получает минимальные дозы ультразвукового облучения.

Запись эхо-сигналов

Интенсивность принимаемого эхо-сигнала зависит от того, какая часть посланного сигнала отразилась от границы раздела фаз и вернулась к датчику. Интенсивность принятых эхо-сигналов может быть графически представлена на осциллоскопе (экране эхокардиографа) в различных режимах (рис. 1.1). Это могут быть электрические импульсы различной амплитуды; при этом по другой оси координат откладывается расстояние от датчика до исследуемых структур. Такая форма графического представления эхо-сигналов получила название